Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Emergent gravity from the correlation of spin-$\tfrac{1}{2}$ systems coupled with a scalar field (2405.02380v1)

Published 3 May 2024 in gr-qc and quant-ph

Abstract: This paper introduces several ideas of emergent gravity, which come from a system similar to an ensemble of quantum spin-$\tfrac{1}{2}$ particles. To derive a physically relevant theory, the model is constructed by quantizing a scalar field in curved space-time. The quantization is based on a classical discretization of the system, but contrary to famous approaches, like loop quantum gravity or causal triangulation, a Monte-Carlo based approach is used instead of a simplicial approximation of the space-time manifold. This avoids conceptual issues related to the choice of the lattice. Moreover, this allows us to easily encode the geometric structures of space, given by the geodesic length between points, into the mean value of a correlation operator between two spin-like systems. Numerical investigations show the relevance of the approach, and the presence of two regimes: a classical and a quantum regime. The latter is obtained when the density of points reaches a given threshold. Finally, a multi-scale analysis is given, where the classical model is recovered from the full quantum one. Each step of the classical limit is illustrated with numerical computations, showing the very good convergence towards the classical limit and the computational efficiency of the theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. “Fermions and emergent noncommutative gravity”. Journal of High Energy Physics 2008, 074 (2008).
  2. Harold Steinacker. “Emergent geometry and gravity from matrix models: an introduction”. Classical and Quantum Gravity 27, 133001 (2010).
  3. David Viennot. “Emergent gravity and d-brane adiabatic dynamics: emergent lorentz connection”. Classical and Quantum Gravity 38, 245004 (2021).
  4. David Viennot. “Fuzzy schwarzschild (2 + 1)-spacetime”. Journal of Mathematical Physics 63, 082302 (2022).
  5. “Quantum graphity: A model of emergent locality”. Phys. Rev. D 77, 104029 (2008).
  6. “Properties of quantum graphity at low temperature”. Phys. Rev. D 84, 024002 (2011).
  7. “Domain structures in quantum graphity”. Phys. Rev. D 86, 044001 (2012).
  8. “Space from Hilbert space: Recovering geometry from bulk entanglement”. Phys. Rev. D 95, 024031 (2017).
  9. “The Hilbert space of quantum gravity is locally finite-dimensional”. Int. J. Mod. Phys. D 26, 1743013 (2017).
  10. “Bulk entanglement gravity without a boundary: Towards finding einstein’s equation in hilbert space”. Phys. Rev. D 97, 086003 (2018).
  11. Thinakkal Padmanabhan. “Emergent gravity paradigm: recent progress”. Modern Physics Letters A 30, 1540007 (2015).
  12. “An optimal transport formulation of the einstein equations of general relativity”. Journal of the European Mathematical Society 25, 933–994 (2022).
  13. Jonathan Gorard. “Some quantum mechanical properties of the wolfram model”. Complex Syst.29 (2020).
  14. Jonathan Gorard. “Some relativistic and gravitational properties of the wolfram model”. Complex Systems 29, 599–654 (2020).
  15. “Quantum gravity on the computer: Impressions of a workshop”. Universe5 (2019).
  16. “A short review of loop quantum gravity”. Reports on Progress in Physics 84, 042001 (2021).
  17. Alexander Y Yosifov. “Aspects of semiclassical black holes: Development and open problems”. Advances in High Energy Physics 2021, 1–13 (2021).
  18. “Bfss matrix model cosmology: Progress and challenges”. Physics 5, 1–10 (2023).
  19. “Area laws in quantum systems: Mutual information and correlations”. Phys. Rev. Lett. 100, 070502 (2008).
  20. “Causal dynamical triangulations and the search for a theory of quantum gravity”. Int. J. Mod. Phys. D 22, 1330019 (2013).
  21. Carlo Rovelli. “Quantum Gravity”. Cambridge Monographs on Mathematical Physics. Cambridge University Press.  (2004).
  22. “Covariant loop quantum gravity: An elementary introduction to quantum gravity and spinfoam theory”. Cambridge University Press.  (2014).
  23. “Weights of links and plaquettes in a random lattice”. Nuclear Physics B 210, 337–346 (1982).
  24. Hai-cang Ren. “Matter fields in lattice gravity”. Nuclear Physics B 301, 661–684 (1988).
  25. F. L. Teixeira. “Random Lattice Gauge Theories and Differential Forms” (2013). url: http://arxiv.org/abs/1304.3485.
  26. Arata Yamamoto. “Lattice QCD in curved spacetimes”. Phys. Rev. D 90, 054510 (2014).
  27. “Quantum Finite Elements for Lattice Field Theory”. PoS LATTICE2015, 296 (2016). arXiv:1601.01367.
  28. Russel E. Caflisch. “Monte carlo and quasi-monte carlo methods”. Acta Numerica 7, 1–49 (1998).
  29. “Monte carlo on manifolds: sampling densities and integrating functions”. Communications on Pure and Applied Mathematics 71, 2609–2647 (2018).
  30. “Quasi-monte carlo integration on manifolds with mapped low-discrepancy points and greedy minimal riesz s-energy points”. Applied Numerical Mathematics 127, 110–124 (2018).
  31. “The motion of point particles in curved spacetime”. Living Reviews in Relativity 14, 7 (2011).
  32. “Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction”. In Advances in algebraic quantum field theory. Pages 191–251. Springer (2015).
  33. Christian Gérard. “An introduction to quantum field theory on curved spacetimes”. Page 171–218. London Mathematical Society Lecture Note Series. Cambridge University Press.  (2018).
  34. “Gravitation”. W. H. Freeman.  (1973). 1st edition.
  35. “Quantum field theory”. Courier Corporation.  (2012).
  36. “Boson localization and the superfluid-insulator transition”. Phys. Rev. B 40, 546–570 (1989).
  37. “Non-standard hubbard models in optical lattices: a review”. Reports on Progress in Physics 78, 066001 (2015).
  38. “Cavity qed with quantum gases: new paradigms in many-body physics”. Advances in Physics 70, 1–153 (2021).
  39. “The hubbard model”. Annual review of condensed matter physics 13, 239–274 (2022).
  40. “Cold atoms meet lattice gauge theory”. Philosophical Transactions of the Royal Society A 380, 20210064 (2022).
  41. “Quantum simulation of discrete curved spacetime by the bose–hubbard model: From analog acoustic black hole to quantum phase transition”. Annals of Physics 388, 186–196 (2018).
  42. Sean A. Hayward. “Formation and evaporation of nonsingular black holes”. Phys. Rev. Lett. 96, 031103 (2006).
  43. Jin-Sheng Peng. “Introduction To Modern Quantum Optics”. Wspc. Singapore (1998). 1st edition.
  44. “Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics”. Springer Science & Business Media.  (2004).
  45. “The Theory of Open Quantum Systems”. Oxford University Press. Oxford (2007).
  46. “Adiabatic elimination for open quantum systems with effective Lindblad master equations” (2016). url: http://arxiv.org/abs/1603.04630.
  47. “Gravitational decoherence”. Classical and Quantum Gravity 34, 193002 (2017).
  48. “Adiabatic transport of qubits around a black hole”. Classical and Quantum Gravity 34, 055005 (2017).
  49. B. Kramer and A. MacKinnon. “Localization: theory and experiment”. Rep. Prog. Phys. 56, 1469–1564 (1993).
  50. Subir Sachdev. “Quantum phase transitions”. Physics world 12, 33 (1999).
  51. “Semiclassical quantization of an n𝑛\displaystyle nitalic_n-particle bose-hubbard model”. Phys. Rev. A 76, 032116 (2007).
  52. “Semiclassical analysis of bose–hubbard dynamics”. New Journal of Physics 17, 053030 (2015).
  53. Leo Brewin. “Riemann normal coordinate expansions using cadabra”. Classical and Quantum Gravity 26, 175017 (2009).
  54. Ravipudi Venkata Rao. “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems”. International Journal of Industrial Engineering Computations 7, 19–34 (2016).
  55. “Numerical optimization: theoretical and practical aspects”. Springer Science & Business Media.  (2006).
  56. “Calculus of variations”. Courier Corporation.  (2000).
  57. J. F. Colombeau. “Elementary Introduction to New Generalized Functions”. Elsevier.  (2011).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.