A pole-to-pole map of hydrocarbons in Saturn's upper stratosphere and mesosphere (2405.01763v1)
Abstract: We analyze data from the final two years of the Cassini mission to retrieve the distributions of methane, ethane, acetylene, ethylene, and benzene in Saturn's upper stratosphere and mesosphere from stellar occultations observed by the Ultraviolet Imaging Spectrograph (UVIS), spanning pole-to-pole. These observations represent the first 2D snapshot with latitude and depth of Saturn's photochemical production region around northern summer solstice. Using UVIS occultations and CIRS limb scans, we derive temperature-pressure profiles and atmospheric structure models for each occultation latitude. W detect a strong meridional trend in the homopause pressure level, which ranges from approximately 0.05 microbar around the subsolar point to around 5 microbar at the poles, implying much weaker mixing at the poles than near the subsolar point. This trend could be explained by upwelling at low latitudes and downwelling at high latitudes, requiring vertical wind speeds under 2 cm/s. Photochemical product distributions follow this trend and also show a clear seasonal trend at pressures between 0.01 and 10 microbar, with higher abundances in the summer hemisphere. We compare the observed distributions with results from 1D seasonal photochemical models, with and without ion chemistry, to explore the impact of ion chemistry. We find that ion chemistry is particularly important for matching the observed C6H6 distribution, while its impact on other species is less pronounced. The best agreement between the models and the observations is obtained in the summer hemisphere. Disagreements between model and observations in the winter hemisphere and auroral region may be due to the lack of transport by global circulation and auroral electron and ion precipitation in our photochemical models. Finally, we compare C2H2 profiles from UVIS occultations with CIRS limb scans, finding good agreement where they overlap.
- Vertical transport and photochemistry in the terrestrial mesosphere and lower thermosphere (50–120 km). Journal of Geophysical Research: Space Physics 86, 3617–3627. doi:https://doi.org/10.1029/JA086iA05p03617.
- Saturn’s gravitational field, internal rotation, and interior structure. Science 317, 1384. doi:10.1126/science.1144835.
- CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets. Icarus 85, 355–379. doi:10.1016/0019-1035(90)90123-Q.
- Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. University of Arizona Press. Pages: 239-277 Publication Title: Saturn ADS Bibcode: 1984satn.book..239A.
- Aeronomy. Part B. Academic Press, New York. OCLC: 896841347.
- Joint evolution of equatorial oscillation and interhemispheric circulation in Saturn’s stratosphere. Nature Astronomy 6, 804–811. doi:10.1038/s41550-022-01670-7.
- Reanalysis of voyager 2 UVS occultations at Uranus: Hydrocarbon mixing ratios in the equatorial stratosphere. Icarus 88, 448–464. doi:10.1016/0019-1035(90)90094-P.
- Voyager 2 ultraviolet spectrometer solar occultations at Neptune: Constraints on the abundance of methane in the stratosphere. Journal of Geophysical Research 97, 11681. doi:10.1029/92JE00959.
- A pole-to-pole pressure-temperature map of Saturn’s thermosphere from Cassini Grand Finale data. Nature Astronomy 4, 872–879. doi:10.1038/s41550-020-1060-0, arXiv:2102.09983.
- Evidence for Gravity Waves in the Thermosphere of Saturn and Implications for Global Circulation. Geophysical Research Letters 49. doi:10.1029/2021GL097219.
- New benzene absorption cross sections in the VUV, relevance for Titan’s upper atmosphere. Icarus 265, 95–109. doi:10.1016/j.icarus.2015.10.006.
- A Saturnian stratospheric seasonal climate model. Icarus 38, 349–357. doi:10.1016/0019-1035(79)90191-X.
- Temperature-dependent photoabsorption cross sections in the VUV-UV region. I. Methane and ethane. Journal of Quantitative Spectroscopy and Radiative Transfer 85, 195–209. doi:10.1016/S0022-4073(03)00225-5.
- The composition of Saturn’s atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio. The Astrophysical Journal 287, 899. doi:10.1086/162748.
- Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn’s atmosphere. Astronomy & Astrophysics 398, 335–344. doi:10.1051/0004-6361:20021659.
- Low temperature studies of the removal reactions of 1CH2 with particular relevance to the atmosphere of Titan. Icarus 303, 10–21. doi:10.1016/j.icarus.2017.12.023.
- Saturn Atmospheric Modeling Working Group Final D-104871. Technical Report. Jet Propulsion Laboratory.
- Temperatures, winds, and composition in the saturnian system. Science 307, 1247–1251. doi:10.1126/science.1105806.
- Methane and its isotopologues on saturn from cassini/cirs observations. Icarus 199, 351–367. doi:https://doi.org/10.1016/j.icarus.2008.09.019.
- Saturn’s Seasonally Changing Atmosphere: Thermal Structure, Composition and Aerosols. Cambridge University Press. Cambridge Planetary Science, p. 251–294. doi:10.1017/9781316227220.010.
- Seasonal evolution of saturn’s polar temperatures and composition. Icarus 250, 131–153. doi:https://doi.org/10.1016/j.icarus.2014.11.022.
- Saturn’s Atmosphere in Northern Summer Revealed by JWST/MIRI. Journal of Geophysical Research: Planets 128, e2023JE007924. doi:10.1029/2023JE007924.
- Saturn’s Seasonal Atmosphere at Northern Summer Solstice. doi:10.48550/ARXIV.2012.09288. publisher: arXiv Version Number: 3.
- Dissociative recombination. Physics Reports 430, 277–374. doi:10.1016/j.physrep.2006.04.002.
- Models for Polar Haze Formation in Jupiter’s Stratosphere. Icarus 158, 389–400. doi:10.1006/icar.2002.6885.
- General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus 218, 861–875. doi:10.1016/j.icarus.2012.02.004.
- The “thermospheric spoon”: A mechanism for the semiannual density variation. Journal of Geophysical Research: Space Physics 103, 3951–3956. doi:10.1029/97JA03335.
- Response of Saturn’s auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity: SATURN’S AURORAL IONOSPHERE. Journal of Geophysical Research: Space Physics 116, n/a–n/a. doi:10.1029/2010JA016412.
- Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn’s stratosphere at southern summer solstice. Icarus 177, 18–31. doi:10.1016/j.icarus.2005.02.016.
- Evolution of the equatorial oscillation in saturn’s stratosphere between 2005 and 2010 from cassini/cirs limb data analysis. Geophysical Research Letters 38. doi:https://doi.org/10.1029/2011GL047192.
- Meridional distribution of CH3C2H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus 209, 682–695. doi:10.1016/j.icarus.2010.03.033.
- Vertical and meridional distribution of ethane, acetylene and propane in saturn’s stratosphere from cirs/cassini limb observations. Icarus 203, 214–232. doi:https://doi.org/10.1016/j.icarus.2009.04.002.
- Equatorial oscillation and planetary wave activity in saturn’s stratosphere through the cassini epoch. Journal of Geophysical Research: Planets 123, 246–261. doi:https://doi.org/10.1002/2017JE005419.
- Stratospheric benzene and hydrocarbon aerosols detected in Saturn’s auroral regions. Astronomy & Astrophysics 580, A89. doi:10.1051/0004-6361/201424745.
- Global climate modeling of Saturn’s atmosphere. Part I: Evaluation of the radiative transfer model. Icarus 238, 110–124. doi:10.1016/j.icarus.2014.05.010.
- Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons: ALTITUDE OF SATURN’S AURORA. Geophysical Research Letters 36, n/a–n/a. doi:10.1029/2008GL036554.
- Infrared Observations of the Saturnian System from Voyager 1. Science 212, 192–200. doi:10.1126/science.212.4491.192.
- Albedo, internal heat flux, and energy balance of Saturn. Icarus 53, 262–285. doi:10.1016/0019-1035(83)90147-1.
- Saturn’s latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus 202, 249–259. doi:10.1016/j.icarus.2009.02.013.
- Identification of resonance features within the rings of Saturn. Nature 297, 115–120. doi:10.1038/297115a0.
- Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus 190, 556–572. doi:10.1016/j.icarus.2007.03.009.
- 2D photochemical modeling of Saturn’s stratosphere. Part I: Seasonal variation of atmospheric composition without meridional transport. Icarus 257, 163–184. doi:10.1016/j.icarus.2015.04.001.
- 2D photochemical modeling of Saturn’s stratosphere. Part II: Feedback between composition and temperature. Icarus 267, 334–343. doi:10.1016/j.icarus.2015.12.007.
- Temperatures and CH4 mixing ratios near the homopause of the 8 µm north polar hot spot of Jupiter. Icarus 281, 281–285. doi:10.1016/j.icarus.2016.09.017.
- CH4 mixing ratios at microbar pressure levels of Jupiter as constrained by 3-micron ISO data. Icarus 237, 42–51. doi:10.1016/j.icarus.2014.04.023.
- Atmospheric structure and helium abundance on saturn from cassini/uvis and cirs observations. Icarus 307, 161–171. doi:10.1016/j.icarus.2018.02.020.
- The density and temperature structure near the exobase of saturn from cassini uvis solar occultations. Icarus 226, 1318–1330. doi:https://doi.org/10.1016/j.icarus.2013.07.037.
- Saturn in lyman alpha: A comparison of Cassini and Voyager observations. Icarus 339, 113594. doi:10.1016/j.icarus.2019.113594.
- Saturn’s variable thermosphere from Cassini/UVIS occultations. Icarus 260, 174–189. doi:10.1016/j.icarus.2015.07.008.
- The mesosphere and lower thermosphere of titan revealed by cassini/uvis stellar occultations. Icarus 216, 507–534. doi:https://doi.org/10.1016/j.icarus.2011.09.022.
- The detection of benzene in saturn’s upper atmosphere. Geophysical Research Letters 43, 7895–7901. doi:https://doi.org/10.1002/2016GL070000.
- An empirical model of the Saturn thermosphere. Icarus 362, 114396. doi:10.1016/j.icarus.2021.114396.
- Saturn northern aurorae at solstice from HST observations coordinated with Cassini Grand Finale. Geophysical Research Letters 45, 9353–9362. doi:10.1029/2018GL078211. arXiv:1808.08168 [astro-ph].
- Vertical winds in the thermosphere. Journal of Geophysical Research 117.
- The atmosphere of Saturn - an analysis of the Voyager radio occultation measurements. The Astronomical Journal 90, 1136. doi:10.1086/113820.
- Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research 86, 9707. doi:10.1029/JC086iC10p09707.
- The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus 247, 218–247. doi:10.1016/j.icarus.2014.09.039.
- The interstellar chemistry of C3H and C3H2 isomers. Monthly Notices of the Royal Astronomical Society 470, 4075–4088. doi:10.1093/mnras/stx1265.
- The photochemical production of aromatics in the atmosphere of Titan. icarus 329, 55–71. doi:10.1016/j.icarus.2019.03.024.
- Non-linear Least Squares Fitting in IDL with MPFIT.
- Gaseous diffusion coefficients. Journal of Physical and Chemical Reference Data 1, 3–118. doi:10.1063/1.3253094, arXiv:https://doi.org/10.1063/1.3253094.
- Titan’s ion chemistry: A laboratory perspective. Mass Spectrometry Reviews 26, 281–319. doi:10.1002/mas.20117.
- Gravity Waves in Planetary Atmospheres: Their Effects and Parameterization in Global Circulation Models. Atmosphere 10, 531. doi:10.3390/atmos10090531.
- Models of Saturn’s Interior Constructed with Accelerated Concentric Maclaurin Spheroid Method. The Astrophysical Journal 879, 78. doi:10.3847/1538-4357/ab23f0. arXiv:1905.08907 [astro-ph].
- Detection of acetylene in the Saturnian atmosphere, using the IUE satellite. The Astrophysical Journal 229, L107. doi:10.1086/182939.
- Photochemistry of Saturn’s Atmosphere II. Effects of an Influx of External Oxygen. Icarus 145, 166–202. doi:10.1006/icar.1999.6320.
- Evolution of stratospheric chemistry in the Saturn storm beacon region. Icarus 261, 149–168. doi:10.1016/j.icarus.2015.08.012.
- Saturn’s atmospheric response to the large influx of ring material inferred from cassini inms measurements. Icarus 391, 115328. doi:https://doi.org/10.1016/j.icarus.2022.115328.
- Seasonal stratospheric photochemistry on Uranus and Neptune. Icarus 307, 124–145. doi:10.1016/j.icarus.2018.02.004.
- Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets: PHOTOCHEMISTRY IN JUPITER’S STRATOSPHERE. Journal of Geophysical Research: Planets 110, n/a–n/a. doi:10.1029/2005JE002411.
- Latitudinal and seasonal models of stratospheric photochemistry on saturn: Comparison with infrared data from irtf/texes. Journal of Geophysical Research: Planets 110. doi:https://doi.org/10.1029/2005JE002450.
- CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b. The Astrophysical Journal 763, 25. doi:10.1088/0004-637X/763/1/25.
- Dust ablation on the giant planets: Consequences for stratospheric photochemistry. Icarus 297, 33–58. doi:10.1016/j.icarus.2017.06.002.
- DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b. The Astrophysical Journal 737, 15. doi:10.1088/0004-637X/737/1/15.
- A global circulation model of Saturn’s thermosphere. Icarus 180, 147–160. doi:10.1016/j.icarus.2005.09.002.
- Magnetosphere–atmosphere coupling at Saturn: 1 – Response of thermosphere and ionosphere to steady state polar forcing. Icarus 221, 481–494. doi:10.1016/j.icarus.2012.08.034.
- On the global distribution of neutral gases in Titan’s upper atmosphere and its effect on the thermal structure. Journal of Geophysical Research 108, 1453. doi:10.1029/2003JA010054.
- Atmospheric Waves and Their Possible Effect on the Thermal Structure of Saturn’s Thermosphere. Geophysical Research Letters 46, 2372–2380. doi:10.1029/2018GL081124.
- The properties of gases and liquids. 4th ed ed., McGraw-Hill, New York.
- Extreme Ultraviolet Observations from the Voyager 2 Encounter with Saturn. Science 215, 548–553. doi:10.1126/science.215.4532.548.
- Ionospheres: Physics, Plasma Physics, and Chemistry. 1 ed., Cambridge University Press. doi:10.1017/CBO9780511551772.
- Thermal structure of Jupiter’s atmosphere near the edge of a 5-micron hot spot in the north equatorial belt. Journal of Geophysical Research: Planets 103, 22857–22889. doi:10.1029/98JE01766.
- Saturn upper atmospheric structure from Cassini EUV and FUV occultations 11{}^{\textrm{1}}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT This article is part of a Special Issue that honours the work of Dr. Donald M. Hunten FRSC who passed away in December 2010 after a very illustrious career. Canadian Journal of Physics 90, 817–831. doi:10.1139/p2012-036.
- The Saturn hydrogen plume. Planetary and Space Science 57, 1659–1670. doi:10.1016/j.pss.2009.05.002.
- From Voyager-IRIS to Cassini-CIRS: Interannual variability in Saturn’s stratosphere? Icarus 233, 281–292. doi:10.1016/j.icarus.2014.02.009.
- Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus 225, 257–271. doi:10.1016/j.icarus.2013.03.011.
- Jupiter’s auroral-related stratospheric heating and chemistry I: Analysis of Voyager-IRIS and Cassini-CIRS spectra. Icarus 292, 182–207. doi:10.1016/j.icarus.2016.12.033.
- Spatial Variations in the Altitude of the CH 44{}_{\textrm{4}}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT Homopause at Jupiter’s Mid-to-high Latitudes, as Constrained from IRTF-TEXES Spectra. The Planetary Science Journal 1, 85. doi:10.3847/PSJ/abc887.
- An Analysis of the Voyager 2 Ultraviolet Spectrometer Occultation Data at Uranus: Inferring Heat Sources and Model Atmospheres. Icarus 101, 45–63. doi:10.1006/icar.1993.1005.
- Saturn’s Variable Thermosphere. 1 ed.. Cambridge University Press. pp. 224–250. doi:10.1017/9781316227220.009.
- Determination of Global Mean Eddy Diffusive Transport in the Mesosphere and Lower Thermosphere From Atomic Oxygen and Carbon Dioxide Climatologies. Journal of Geophysical Research: Atmospheres 124, 13519–13533. doi:10.1029/2019JD031329.
- Seasonal changes in saturn’s stratosphere inferred from cassini/cirs limb observations. Icarus 258, 224–238. doi:https://doi.org/10.1016/j.icarus.2015.05.025.
- Solutions of ill-posed problems. V. H. Winston & Sons, Washington, D.C.: John Wiley & Sons, New York. Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics.
- The detection of ethane on Saturn. The Astrophysical Journal 197, L77. doi:10.1086/181782.
- Saturn: a Study of the 3V3 Methane Band. The Astrophysical Journal 182, 615. doi:10.1086/152170.
- Saturn: Long-term variation of H2 and CH4 absorptions. Icarus 31, 369–384. doi:10.1016/0019-1035(77)90029-X.
- Saturn’s upper atmosphere during the Voyager era: Reanalysis and modeling of the UVS occultations. Icarus 258, 135–163. doi:10.1016/j.icarus.2015.06.007.
- Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model. Icarus 324, 120–197. doi:10.1016/j.icarus.2018.06.013.
- Formation and distribution of benzene on titan. Journal of Geophysical Research 113, E05007. doi:10.1029/2007JE002997.
- RAPID ASSOCIATION REACTIONS AT LOW PRESSURE: IMPACT ON THE FORMATION OF HYDROCARBONS ON TITAN. The Astrophysical Journal 744, 11. doi:10.1088/0004-637X/744/1/11.
- Chemical interactions between Saturn’s atmosphere and its rings. Science 362, eaat2382. doi:10.1126/science.aat2382.
- Photochemical studies of Jupiter and Titan. Ph.D. thesis. California Institute of Technology. Pages: 1397 Publication Title: Ph.D. Thesis ADS Bibcode: 2002PhDT……..21W.
- Benzene and Haze Formation in the Polar Atmosphere of Jupiter: BENZENE AND HAZE FORMATION. Geophysical Research Letters 30. doi:10.1029/2002GL016661.
- Measurements of temperature-dependent absorption cross sections of C 22{}_{\textrm{2}}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT H 22{}_{\textrm{2}}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in the VUV-UV region. Journal of Geophysical Research: Planets 106, 7629–7636. doi:10.1029/2000JE001292.
- Temperature-dependent photoabsorption cross sections in the vuv-uv region: Ethylene. Journal of Geophysical Research: Planets 109. doi:https://doi.org/10.1029/2003JE002180.
- Structure of the Jovian Stratosphere at the Galileo Probe Entry Site. Icarus 152, 331–346. doi:10.1006/icar.2001.6640.
- Methane escape from Titan’s atmosphere. Journal of Geophysical Research (Planets) 113, E10003. doi:10.1029/2007JE003031.
- The Distribution Hydrocarbons in Neptune’s Upper Atmosphere. Icarus 104, 38–59. doi:10.1006/icar.1993.1081.
- Photochemistry of the atmosphere of titan - comparison between model and obserations. Astrophysical Journal Supplement Series 55, 465–506. doi:doi:10.1086/190963.
- Global-mean Vertical Tracer Mixing in Planetary Atmospheres. I. Theory and Fast-rotating Planets. The Astrophysical Journal 866, 1. doi:10.3847/1538-4357/aada85.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.