Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigation on optimal microstructure of dual-phase steel with high strength and ductility by machine learning (2405.01689v1)

Published 2 May 2024 in cs.CE

Abstract: In this study, we developed an inverse analysis framework that proposes a microstructure for dual-phase (DP) steel that exhibits high strength and ductility. The inverse analysis method proposed in this study involves repeated random searches on a model that combines a generative adversarial network (GAN), which generates microstructures, and a convolutional neural network (CNN), which predicts the maximum stress and working limit strain from DP steel microstructures. GAN was trained using images of DP steel microstructures generated by the phase-field method. CNN was trained using images of DP steel microstructures, the maximum stress and the working limit strain calculated by the dislocation-crystal plasticity finite element method. The constructed framework made an efficient search for microstructures possible because of a low-dimensional search space by a latent variable of GAN. The multiple deformation modes were considered in this framework, which allowed the required microstructures to be explored under complex deformation modes. A microstructure with a fine grain size was proposed by using the developed framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. doi:10.1038/nmat3115.
  2. doi:10.1146/annurev-matsci-070214-021103.
  3. doi:10.1016/j.msea.2014.02.058.
  4. doi:10.1016/j.actamat.2010.10.002.
  5. doi:10.1016/j.actamat.2005.02.015.
  6. doi:10.1016/S0020-7683(98)00341-2.
  7. doi:10.1016/j.ijmecsci.2020.105735.
  8. doi:10.1016/j.finel.2023.103948.
  9. doi:10.1016/j.ijmecsci.2022.107771.
  10. doi:10.1016/j.actamat.2011.11.039.
  11. doi:10.1016/j.actamat.2006.04.029.
  12. doi:10.1016/j.actamat.2012.01.055.
  13. doi:10.1016/j.commatsci.2015.10.048.
  14. doi:10.1016/j.actamat.2012.08.054.
  15. doi:10.1016/j.ijplas.2010.12.001.
  16. doi:10.1016/j.actamat.2005.12.014.
  17. doi:10.1016/j.ijplas.2020.102703.
  18. doi:10.1016/j.ijmecsci.2020.105685.
  19. doi:10.1103/PhysRevB.69.134103.
  20. doi:10.1016/j.ijmecsci.2021.106650.
  21. doi:10.1016/j.commatsci.2022.111990.
  22. doi:10.3389/fmats.2019.00110.
  23. doi:10.1038/s41524-017-0056-5.
  24. doi:10.1103/PhysRevMaterials.2.120301.
  25. doi:10.1038/s41586-018-0337-2.
  26. doi:10.1016/j.scib.2019.06.026.
  27. doi:10.1103/PhysRevLett.120.145301.
  28. doi:10.1016/j.conbuildmat.2013.02.064.
  29. doi:10.1016/j.matdes.2020.108970.
  30. doi:10.1007/s00466-021-02090-6.
  31. doi:10.18063/msam.v1i1.6.
  32. doi:10.1088/2515-7639/abca7b.
  33. doi:10.1103/PhysRevMaterials.3.095201.
  34. doi:10.1007/s00466-020-01952-9.
  35. doi:10.1016/j.commatsci.2018.05.014.
  36. doi:10.1007/s00466-018-1643-0.
  37. doi:10.1007/s00466-021-02112-3.
  38. doi:10.1007/s00466-019-01716-0.
  39. doi:10.1016/j.cma.2022.115741.
  40. doi:10.1007/s11837-021-04696-w.
  41. doi:10.1016/j.ijplas.2019.02.012.
  42. doi:10.1016/j.actamat.2016.10.033.
  43. doi:10.1016/j.matchar.2021.111638.
  44. doi:10.1038/srep32577.
  45. doi:10.1016/j.ijmecsci.2022.107920.
  46. doi:10.1021/acs.nanolett.8b03171.
  47. doi:10.1126/sciadv.aar4206.
  48. doi:10.1080/27660400.2022.2080483.
  49. doi:10.1016/j.commatsci.2021.110278.
  50. doi:10.2355/isijinternational.ISIJINT-2019-401.
  51. doi:10.1016/S1359-6454(96)00180-2.
  52. doi:10.1016/0001-6160(79)90196-2.
  53. doi:10.14989/doctor.k20367.
  54. doi:10.48550/arXiv.1406.2661.
  55. I. J. Goodfellow, On distinguishability criteria for estimating generative models (2014). doi:10.48550/arXiv.1412.6515.
  56. doi:10.48550/arXiv.1701.07875.
  57. doi:10.1016/j.actamat.2008.12.017.
  58. doi:10.1016/0022-5096(77)90001-1.
  59. doi:10.1016/0001-6160(79)90036-1.
  60. doi:10.1098/rspa.1976.0027.
  61. doi:10.1016/0020-7683(83)90023-9.
  62. doi:10.1080/14786435.2020.1756501.
  63. doi:10.1080/01418619408242931.
  64. doi:10.1299/mej.19-00612.
  65. doi:10.1080/14786436008238300.
  66. doi:10.2355/isijinternational.48.1114.
  67. doi:10.1016/j.cma.2017.03.037.
  68. doi:10.1016/j.mtcomm.2023.107233.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com