Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dynamical Freezing in Exactly Solvable Models of Driven Chaotic Quantum Dots (2405.01627v4)

Published 2 May 2024 in cond-mat.str-el, cond-mat.mes-hall, cond-mat.stat-mech, and hep-th

Abstract: The late-time equilibrium behavior of generic interacting models is determined by the coupled hydrodynamic equations associated with the globally conserved quantities. In the presence of an external time-dependent drive, non-integrable systems typically thermalize to an effectively infinite-temperature state, losing all memory of their initial states. However, in the presence of a large time-periodic Floquet drive, there exist special points in phase-space where the strongly interacting system develops approximate {\it emergent} conservation laws. Here we present results for an exactly solvable model of two coupled chaotic quantum dots with multiple orbitals interacting via random two and four-fermion interactions in the presence of a Floquet drive. We analyze the phenomenology of dynamically generated freezing using a combination of exact diagonalization, and field-theoretic analysis in the limit of a large number of electronic orbitals. The model displays universal freezing behavior irrespective of whether the theory is averaged over the disorder configurations or not. We present explicit computations for the growth of many-body chaos and entanglement entropy, which demonstrates the long-lived coherence associated with the interacting degrees of freedom even at late-times at the dynamically frozen points. We also compute the slow timescale that controls relaxation away from exact freezing in a high-frequency expansion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  2. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  3. H. Tasaki, From quantum dynamics to the canonical distribution: General picture and a rigorous example, Phys. Rev. Lett. 80, 1373 (1998).
  4. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  5. A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Advances in Physics 65, 239 (2016), https://doi.org/10.1080/00018732.2016.1198134 .
  6. D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals of physics 321, 1126 (2006).
  7. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting electrons in disordered wires: Anderson localization and low-t𝑡titalic_t transport, Phys. Rev. Lett. 95, 206603 (2005).
  8. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015), http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726 .
  9. E. Altman and R. Vosk, Universal dynamics and renormalization in many-body-localized systems, Annual Review of Condensed Matter Physics 6, 383 (2015), http://dx.doi.org/10.1146/annurev-conmatphys-031214-014701 .
  10. W. De Roeck and F. m. c. Huveneers, Stability and instability towards delocalization in many-body localization systems, Phys. Rev. B 95, 155129 (2017).
  11. S. Gopalakrishnan and D. A. Huse, Instability of many-body localized systems as a phase transition in a nonstandard thermodynamic limit, Phys. Rev. B 99, 134305 (2019).
  12. D. Sels and A. Polkovnikov, Thermalization of dilute impurities in one-dimensional spin chains, Phys. Rev. X 13, 011041 (2023).
  13. A. Lazarides, A. Das, and R. Moessner, Equilibrium states of generic quantum systems subject to periodic driving, Phys. Rev. E 90, 012110 (2014).
  14. L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4, 041048 (2014).
  15. K. Sacha and J. Zakrzewski, Time crystals: a review, Reports on Progress in Physics 81, 016401 (2017).
  16. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  17. A. Das, Exotic freezing of response in a quantum many-body system, Phys. Rev. B 82, 172402 (2010).
  18. S. Bhattacharyya, A. Das, and S. Dasgupta, Transverse ising chain under periodic instantaneous quenches: Dynamical many-body freezing and emergence of slow solitary oscillations, Phys. Rev. B 86, 054410 (2012).
  19. A. Haldar, R. Moessner, and A. Das, Onset of floquet thermalization, Phys. Rev. B 97, 245122 (2018).
  20. S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993), arxiv:cond-mat/9212030 .
  21. J. Maldacena and D. Stanford, Remarks on the sachdev-ye-kitaev model, Phys. Rev. D 94, 106002 (2016), arxiv:1604.07818 [hep-th] .
  22. C. Kuhlenkamp and M. Knap, Periodically Driven Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 124, 106401 (2020), arxiv:1906.06341 [cond-mat] .
  23. See Supplemental Material for details.
  24. P. Weinberg and M. Bukov, QuSpin: A Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: Bosons, fermions and higher spins, SciPost Physics 7, 020 (2019).
  25. G. Baym and L. P. Kadanoff, Conservation laws and correlation functions, Phys. Rev. 124, 287 (1961).
  26. G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, Cambridge, 2013).
  27. W. Beugeling, R. Moessner, and M. Haque, Finite-size scaling of eigenstate thermalization, Phys. Rev. E 89, 042112 (2014).
  28. Y. Huang, F. G. S. L. Brandão, and Y.-L. Zhang, Finite-size scaling of out-of-time-ordered correlators at late times, Phys. Rev. Lett. 123, 010601 (2019).
  29. Y. Gu, A. Kitaev, and P. Zhang, A two-way approach to out-of-time-order correlators, J. High Energ. Phys. 2022 (3), 133.
  30. I. L. Aleiner, L. Faoro, and L. B. Ioffe, Microscopic model of quantum butterfly effect: Out-of-time-order correlators and traveling combustion waves, Annals of Physics 375, 378 (2016).
  31. A. Kamenev, Field Theory of Non-Equilibrium Systems, 2nd ed. (Cambridge University Press, Cambridge, 2023).
  32. A. A. Patel and S. Sachdev, Quantum chaos on a critical Fermi surface, Proc. Nat. Acad. Sci. 114, 1844 (2017), arXiv:1611.00003 [cond-mat.str-el] .
  33. D. Stanford, Many-body chaos at weak coupling, JHEP 10, 009, arXiv:1512.07687 [hep-th] .
  34. D. Chowdhury and B. Swingle, Onset of many-body chaos in the O(N)𝑁(N)( italic_N ) model, Phys. Rev. D 96, 065005 (2017), arXiv:1703.02545 [cond-mat.str-el] .
  35. J. Steinberg and B. Swingle, Thermalization and chaos in QED3, Phys. Rev. D 99, 076007 (2019), arXiv:1901.04984 [cond-mat.str-el] .
  36. S. Grozdanov, K. Schalm, and V. Scopelliti, Kinetic theory for classical and quantum many-body chaos, Phys. Rev. E 99, 012206 (2019), arXiv:1804.09182 [hep-th] .
  37. J. Kim, E. Altman, and X. Cao, Dirac Fast Scramblers, Phys. Rev. B 103, 081113 (2021), arXiv:2010.10545 [cond-mat.str-el] .
  38. A. Keselman, L. Nie, and E. Berg, Scrambling and Lyapunov exponent in spatially extended systems, Phys. Rev. B 103, L121111 (2021), arXiv:2009.10104 [cond-mat.str-el] .
  39. D. A. Abanin, W. De Roeck, and F. Huveneers, Exponentially Slow Heating in Periodically Driven Many-Body Systems, Phys. Rev. Lett. 115, 256803 (2015).
  40. T. Mori, T. Kuwahara, and K. Saito, Rigorous Bound on Energy Absorption and Generic Relaxation in Periodically Driven Quantum Systems, Phys. Rev. Lett. 116, 120401 (2016).
  41. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010), arxiv:1006.3794 [hep-th] .
  42. S. Sachdev, Bekenstein-hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015), arxiv:1506.05111 [hep-th] .
  43. S. Sachdev, Universal low temperature theory of charged black holes with AdS2 horizons, J. Math. Phys. 60, 052303 (2019), arxiv:1902.04078 [hep-th] .
  44. A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, J. High Energ. Phys. 2018 (5), 183, arxiv:1711.08467 [cond-mat, physics:hep-th] .
  45. J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016, 12C104 (2016), arxiv:1606.01857 [hep-th] .
  46. U. Moitra, S. P. Trivedi, and V. Vishal, Extremal and near-extremal black holes and near-CFT1, JHEP 07, 055, arxiv:1808.08239 [hep-th] .
  47. L. V. Iliesiu and G. J. Turiaci, The statistical mechanics of near-extremal black holes, J. High Energ. Phys. 2021 (5), 145, arxiv:2003.02860 [gr-qc, physics:hep-th] .
  48. P. Gao and D. L. Jafferis, A traversable wormhole teleportation protocol in the SYK model, J. High Energ. Phys. 2021 (7), 97.
  49. S. Plugge, É. Lantagne-Hurtubise, and M. Franz, Revival Dynamics in a Traversable Wormhole, Phys. Rev. Lett. 124, 221601 (2020).
  50. T.-G. Zhou and P. Zhang, Tunneling through an eternal traversable wormhole, Phys. Rev. B 102, 224305 (2020).
  51. P. Zhang, More on complex Sachdev-Ye-Kitaev eternal wormholes, J. High Energ. Phys. 2021 (3), 87.
  52. P. Lipavský, V. vSpivcka, and B. Velický, Generalized Kadanoff-Baym ansatz for deriving quantum transport equations, Phys. Rev. B 34, 6933 (1986).
  53. Y. Zhou and M. W. Wu, Optical response of graphene under intense terahertz fields, Phys. Rev. B 83, 245436 (2011).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com