Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

2d Ising Critical Couplings from Quantum Gravity (2405.01253v2)

Published 2 May 2024 in hep-th, cond-mat.stat-mech, math-ph, and math.MP

Abstract: Using an exact holographic duality formula between the inhomogeneous 2d Ising model and 3d quantum gravity, we provide a formula for "real" zeroes of the 2d Ising partition function on finite trivalent graphs in terms of the geometry of a 2d triangulation embedded in the three-dimensional Euclidean space. The complex phase of those zeroes is given by the dihedral angles of the triangulation, which reflect its extrinsic curvature within the ambient 3d space, while the modulus is given by the angles within the 2d triangles, thus encoding the intrinsic geometry of the triangulation. Our formula can not cover the whole set of Ising zeroes, but we conjecture that a suitable complexification of these "real" zeroes would provide a more thorough formula. Nevertheless, in the thermodynamic limit, in the case of flat planar 2d triangulations, our Ising zeros' formula gives the critical couplings for isoradial graphs, confirming its generality. Finally, the formula naturally extends to graphs with arbitrary valence in terms of geometry of circle patterns embedded in 3d space. This approach shows an intricate, but precise, new relation between statistical mechanics and quantum geometry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. Ponzano and T. Regge, “Semiclassical limit of Racah coefficients,” in Spectroscopic and group theoretical methods in physics, E. F. Bloch, ed., pp. 1–58. North-Holland Publ. Co., Amsterdam, 1968.
  2. L. Freidel and D. Louapre, “Ponzano-Regge model revisited I: Gauge fixing, observables and interacting spinning particles,” Class. Quant. Grav. 21 (2004) 5685–5726, arXiv:hep-th/0401076.
  3. J. W. Barrett and I. Naish-Guzman, “The Ponzano-Regge model,” Class. Quant. Grav. 26 (2009) 155014, arXiv:0803.3319.
  4. E. R. Livine, “The Ponzano-Regge cylinder and propagator for 3d quantum gravity,” Class. Quant. Grav. 38 (2021), no. 21, 215009, arXiv:2107.03264.
  5. E. R. Livine, “Spinfoam Models for Quantum Gravity: Overview,” arXiv:2403.09364.
  6. C. Rovelli, “The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis,” Phys. Rev. D 48 (1993) 2702–2707, arXiv:hep-th/9304164.
  7. A. Perez, “The Spin Foam Approach to Quantum Gravity,” Living Rev. Rel. 16 (2013) 3, arXiv:1205.2019.
  8. E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.
  9. L. Freidel and D. Louapre, “Ponzano-Regge model revisited II: Equivalence with Chern-Simons,” arXiv:gr-qc/0410141.
  10. V. G. Turaev and O. Y. Viro, “State sum invariants of 3 manifolds and quantum 6j symbols,” Topology 31 (1992) 865–902.
  11. V. Turaev and A. Virelizier, “On two approaches to 3-dimensional TQFTs,” arXiv:1006.3501.
  12. V. Bonzom, F. Costantino, and E. R. Livine, “Duality between Spin networks and the 2D Ising model,” Commun. Math. Phys. 344 (2016), no. 2, 531–579, arXiv:1504.02822.
  13. A. Castro, M. R. Gaberdiel, T. Hartman, A. Maloney, and R. Volpato, “The Gravity Dual of the Ising Model,” Phys. Rev. D 85 (2012) 024032, arXiv:1111.1987.
  14. C.-M. Jian, A. W. W. Ludwig, Z.-X. Luo, H.-Y. Sun, and Z. Wang, “Establishing strongly-coupled 3D AdS quantum gravity with Ising dual using all-genus partition functions,” JHEP 10 (2020) 129, arXiv:1907.06656.
  15. C. Boutillier, B. d. Tilière, and K. Raschel, “The Z-invariant Ising model via dimers,” Probability Theory and Related Fields 174 (July, 2018) 235?305.
  16. B. Westbury, “A generating function for spin network evaluations,” Banach Center Publications 42 (1998), no. 1, 447–456.
  17. L. Freidel and E. R. Livine, “Ponzano-Regge model revisited III: Feynman diagrams and effective field theory,” Class. Quant. Grav. 23 (2006) 2021–2062, arXiv:hep-th/0502106.
  18. V. Bonzom and M. Smerlak, “Bubble divergences from cellular cohomology,” Lett. Math. Phys. 93 (2010) 295–305, arXiv:1004.5196.
  19. V. Bonzom and M. Smerlak, “Bubble divergences from twisted cohomology,” Commun. Math. Phys. 312 (2012) 399–426, arXiv:1008.1476.
  20. V. Bonzom and M. Smerlak, “Bubble divergences: sorting out topology from cell structure,” Annales Henri Poincare 13 (2012) 185–208, arXiv:1103.3961.
  21. J. W. Barrett and F. Hellmann, “Holonomy observables in Ponzano-Regge type state sum models,” Class. Quant. Grav. 29 (2012) 045006, arXiv:1106.6016.
  22. P. Kasteleyn, “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice,” Physica 27 (1961), no. 12, 1209–1225.
  23. L. Freidel and J. Hnybida, “On the exact evaluation of spin networks,” J. Math. Phys. 54 (2013) 112301, arXiv:1201.3613.
  24. V. Bonzom and E. R. Livine, “Generating Functions for Coherent Intertwiners,” Class. Quant. Grav. 30 (2013) 055018, arXiv:1205.5677.
  25. J. Hnybida, “Spin Foams Without Spins,” Class. Quant. Grav. 33 (2016), no. 20, 205003, arXiv:1508.01416.
  26. R. J. Dowdall, H. Gomes, and F. Hellmann, “Asymptotic analysis of the Ponzano-Regge model for handlebodies,” J. Phys. A 43 (2010) 115203, arXiv:0909.2027.
  27. F. Costantino and J. Marche, “Generating series and asymptotics of classical spin networks,” J. Eur. Math. Soc. 17 (2015) 2417?2452, arXiv:1103.5644 (math.GT).
  28. T. Regge, “General Relativity without coordinates,” Nuovo Cim. 19 (1961) 558–571.
  29. F. Luo, “3-Dimensional Schlaefli Formula and Its Generalization,” Communications in Contemporary Mathematics 10 (11, 2008) 835–842, arXiv:0802.2580.
  30. V. Bonzom and E. R. Livine, “Self-duality of the 6⁢j6𝑗6j6 italic_j-symbol and Fisher zeros for the tetrahedron,” Ann. Inst. H. Poincare D Comb. Phys. Interact. 9 (2022), no. 1, 73–119, arXiv:1905.00348.
  31. R. J. Baxter, Exactly solved models in statistical mechanics. Academic Press, 1982.
  32. F. David and B. Eynard, “Planar maps, circle patterns and 2D gravity,” Ann. Inst. H. Poincare D Comb. Phys. Interact. 1 (2014), no. 2, 139–183, arXiv:1307.3123.
  33. M. Han, Z. Huang, H. Liu, and D. Qu, “Complex critical points and curved geometries in four-dimensional Lorentzian spinfoam quantum gravity,” Phys. Rev. D 106 (2022), no. 4, 044005, arXiv:2110.10670.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.