Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adjoint-based goal-oriented implicit shock tracking using full space mesh optimization (2405.00904v1)

Published 1 May 2024 in math.NA and cs.NA

Abstract: Solutions to the governing partial differential equations obtained from a discrete numerical scheme can have significant errors, especially near shocks when the discrete representation of the solution cannot fully capture the discontinuity in the solution. A recent approach to shock tracking [1, 2] has been to implicitly align the faces of mesh elements with the shock, yielding accurate solutions on coarse meshes. In engineering applications, the solution field is often used to evaluate a scalar functional of interest, such as lift or drag over an airfoil. While functionals are sensitive to errors in the flow solution, certain regions in the domain are more important for accurate evaluation of the functional than the rest. Using this fact, we formulate a goal-oriented implicit shock tracking approach that captures a segment of the shock that is important for evaluating the functional. Shock tracking is achieved using Lagrange-Newton-Krylov-Schur (LNKS) full space optimizer, with the objective of minimizing the adjoint-weighted residual error indicator. We also present a method to evaluate the sensitivity and the Hessian of the functional error. Using available block preconditioners for LNKS [3, 4] makes the full space approach scalable. The method is applied to test cases of two-dimensional advection and inviscid compressible flows to demonstrate functional-dependent shock tracking. Tracking the entire shock without using artificial dissipation results in the error converging at the orders of $\mathcal{O}(h{p+1})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com