Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preconditioned iterative solvers for constrained high-order implicit shock tracking methods (2402.18403v2)

Published 28 Feb 2024 in math.NA, cs.NA, and math.OC

Abstract: High-order implicit shock tracking (fitting) is a class of high-order numerical methods that use numerical optimization to simultaneously compute a high-order approximation to a conservation law solution and align elements of the computational mesh with non-smooth features. This alignment ensures that non-smooth features are perfectly represented by inter-element jumps and high-order basis functions approximate smooth regions of the solution without nonlinear stabilization, which leads to accurate approximations on traditionally coarse meshes. In this work, we devise a family of preconditioners for the saddle point linear system that defines the step toward optimality at each iteration of the optimization solver so Krylov solvers can be effectively used. Our preconditioners integrate standard preconditioners from constrained optimization with popular preconditioners for discontinuous Galerkin discretizations such as block Jacobi, block incomplete LU factorizations with minimum discarded fill reordering, and p-multigrid. Thorough studies are performed using two inviscid compressible flow problems to evaluate the effectivity of each preconditioner in this family and their sensitivity to critical shock tracking parameters such as the mesh and Hessian regularization, linearization state, and resolution of the solution space.

Citations (1)

Summary

We haven't generated a summary for this paper yet.