Revisiting relativistic electrically charged polytropic spheres (2405.00890v1)
Abstract: We revisit the problem of the structure and physical properties of electrically charged static spherically symmetric solutions of the Einstein-Maxwell system of equations where the matter model is a polytropic gas. We consider a relativistic polytrope equation of state and take the electric charge density to be proportional to the rest mass density. We construct the families of solutions corresponding to various sets of parameters and analyze their stability and compliance with the causality requirement, with special emphasis on the possibility of constructing black hole mimickers. Concretely, we want to test how much electric charge a given object can hold and how compact it can be. We conclude that there is a microscopic bound on the charge density to rest mass density ratio coincident with the macroscopic bound regarding the extremal Reissner-Nordst\"om black hole. The macroscopic charge to mass ratio for the object can exceed the corresponding microscopic ratio if the object is non-extremal. Crucially, the only way to obtain a black hole mimicker is by taking a subtle limit in which an electrically counterpoised dust solution is obtained.
- A. Aceña and I. Gentile de Austria. Spherically symmetric linear perturbations of electrically counterpoised dust. Class. Quant. Grav., 38(6):065007, 2021. doi: 10.1088/1361-6382/abda63.
- No-go theorem for static configurations of two charged dust species. Class. Quant. Grav., 40(18):185002, 2023. doi: 10.1088/1361-6382/acebd3.
- E. Amorim and P. Hund. General Relativistic Non-Neutral White Dwarf Stars. 10 2021.
- H. Andréasson. Sharp bounds on the critical stability radius for relativistic charged spheres. Commun. Math. Phys., 288:715, 2009. doi: 10.1007/s00220-008-0690-3.
- P. Anninos and T. Rothman. Instability of extremal relativistic charged spheres. Phys. Rev. D, 65(2):024003, Dec. 2001. doi: 10.1103/PhysRevD.65.024003.
- Relativistic polytropic spheres with electric charge: Compact stars, compactness and mass bounds, and quasiblack hole configurations. Phys. Rev. D, 97(10):104045, 2018. doi: 10.1103/PhysRevD.97.104045.
- Polytropic spheres with electric charge: compact stars, the Oppenheimer-Volkoff and Buchdahl limits, and quasiblack holes. Phys. Rev. D, 88:084023, 2013. doi: 10.1103/PhysRevD.88.084023.
- Incompressible relativistic spheres: Electrically charged stars, compactness bounds, and quasiblack hole configurations. Phys. Rev. D, 89(10):104054, 2014. doi: 10.1103/PhysRevD.89.104054.
- J. D. Bekenstein. Hydrostatic Equilibrium and Gravitational Collapse of Relativistic Charged Fluid Balls. Phys. Rev. D, 4:2185–2190, 1971. doi: 10.1103/PhysRevD.4.2185.
- Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions. Nucl. Phys. A, 883:1–24, 2012. doi: 10.1016/j.nuclphysa.2012.02.018.
- W. B. Bonnor. The mass of a static charged sphere. Zeitschrift fur Physik, 160(1):59–65, Feb. 1960. doi: 10.1007/BF01337478.
- W. B. Bonnor. A model of a spheroidal body. Classical and Quantum Gravity, 15(2):351–356, Feb. 1998. doi: 10.1088/0264-9381/15/2/009.
- A Static Body of Arbitrarily Large Density. International Journal of Theoretical Physics, 5(6):371–375, Nov. 1972. doi: 10.1007/BF00713098.
- Are very large gravitational redshifts possible? MNRAS, 170:643–649, Mar. 1975. doi: 10.1093/mnras/170.3.643.
- A. Das. A class of exact solutions of certain classical field equations in general relativity. Proc. R. Soc. Lond., A267:1–10, 1962. doi: http://doi.org/10.1098/rspa.1962.0079.
- Static Distribution of Charged Dust in General Relativity. Proceedings of the Royal Society of London Series A, 303(1472):97–101, Feb. 1968. doi: 10.1098/rspa.1968.0041.
- A. Giuliani and T. Rothman. Absolute stability limit for relativistic charged spheres. Gen. Rel. Grav., 40:1427–1447, 2008. doi: 10.1007/s10714-007-0539-7.
- B. S. Guilfoyle. Interior Weyl-type Solutions to the Einstein-Maxwell Field Equations. General Relativity and Gravitation, 31:1645, Nov. 1999. doi: 10.1023/A:1026706031676.
- Solutions of the Einstein-Maxwell equations with many black holes. Communications in Mathematical Physics, 26(2):87–101, June 1972. doi: 10.1007/BF01645696.
- W. C. Hernandez. Static, Axially Symmetric, Interior Solution in General Relativity. Physical Review, 153(5):1359–1363, Jan. 1967. doi: 10.1103/PhysRev.153.1359.
- Regular and quasi black hole solutions for spherically symmetric charged dust distributions in the Einstein Maxwell theory. Classical and Quantum Gravity, 22(19):3817–3831, Oct. 2005. doi: 10.1088/0264-9381/22/19/001.
- B. V. Ivanov. Static charged perfect fluid spheres in general relativity. Phys. Rev. D, 65:104001, 2002. doi: 10.1103/PhysRevD.65.104001.
- Bonnor stars in d spacetime dimensions. Phys. Rev. D, 77(6):064003, Mar. 2008. doi: 10.1103/PhysRevD.77.064003.
- Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: Theorems and results for Weyl type systems. Phys. Rev. D, 80(2):024010, July 2009. doi: 10.1103/PhysRevD.80.024010.
- Plethora of relativistic charged spheres: The full spectrum of Guilfoyle’s static, electrically charged spherical solutions. Phys. Rev. D, 95(10):104040, May 2017. doi: 10.1103/PhysRevD.95.104040.
- Compact objects in general relativity: From Buchdahl stars to quasiblack holes. Int. J. Mod. Phys. D, 29(11):2041019, 2020. doi: 10.1142/S0218271820410199.
- Compact stars with a small electric charge: the limiting radius to mass relation and the maximum mass for incompressible matter. Eur. Phys. J. C, 75(2):76, 2015. doi: 10.1140/epjc/s10052-015-3274-3.
- S. D. Majumdar. A Class of Exact Solutions of Einstein’s Field Equations. Physical Review, 72(5):390–398, Sept. 1947. doi: 10.1103/PhysRev.72.390.
- R. Meinel and M. Hütten. On the black hole limit of electrically counterpoised dust configurations. Classical and Quantum Gravity, 28(22):225010, Nov. 2011. doi: 10.1088/0264-9381/28/22/225010.
- A. Papaetrou. A Static solution of the equations of the gravitational field for an arbitrary charge distribution. Proc. Roy. Irish Acad. A, 51:191–204, 1947.
- Electrically charged compact stars and formation of charged black holes. Phys. Rev. D, 68:084004, 2003. doi: 10.1103/PhysRevD.68.084004.
- The Sage Developers. SageMath, the Sage Mathematics Software System, 2022. URL https://www.sagemath.org. DOI 10.5281/zenodo.6259615.
- The SageManifolds Developers. SageManifolds. URL https://sagemanifolds.obspm.fr/.
- V. Varela. Construction of Sources for Majumdar-Papapetrou Spacetimes. General Relativity and Gravitation, 35(10):1815–1831, Oct. 2003. doi: 10.1023/A:1026014114308.
- H. Weyl. Zur Gravitationstheorie. Annalen der Physik, 359(18):117–145, Jan. 1917. doi: 10.1002/andp.19173591804.
- The influence of a net charge on the critical mass of a neutron star. Astrophysics and Space Science, 88:81–88, 1982. doi: 10.1007/BF00648990.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.