Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Social Perception, Interactions, and Safety Aspects of Sidewalk Delivery Robots Using Sentiment Analysis (2405.00688v1)

Published 9 Mar 2024 in cs.RO, cs.AI, cs.CL, cs.HC, and cs.LG

Abstract: This article presents a comprehensive sentiment analysis (SA) of comments on YouTube videos related to Sidewalk Delivery Robots (SDRs). We manually annotated the collected YouTube comments with three sentiment labels: negative (0), positive (1), and neutral (2). We then constructed models for text sentiment classification and tested the models' performance on both binary and ternary classification tasks in terms of accuracy, precision, recall, and F1 score. Our results indicate that, in binary classification tasks, the Support Vector Machine (SVM) model using Term Frequency-Inverse Document Frequency (TF-IDF) and N-gram get the highest accuracy. In ternary classification tasks, the model using Bidirectional Encoder Representations from Transformers (BERT), Long Short-Term Memory Networks (LSTM) and Gated Recurrent Unit (GRU) significantly outperforms other machine learning models, achieving an accuracy, precision, recall, and F1 score of 0.78. Additionally, we employ the Latent Dirichlet Allocation model to generate 10 topics from the comments to explore the public's underlying views on SDRs. Drawing from these findings, we propose targeted recommendations for shaping future policies concerning SDRs. This work provides valuable insights for stakeholders in the SDR sector regarding social perception, interaction, and safety.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets