Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentiment Analysis for YouTube Comments in Roman Urdu (2102.10075v1)

Published 19 Feb 2021 in cs.CL and cs.AI

Abstract: Sentiment analysis is a vast area in the Machine learning domain. A lot of work is done on datasets and their analysis of the English Language. In Pakistan, a huge amount of data is in roman Urdu language, it is scattered all over the social sites including Twitter, YouTube, Facebook and similar applications. In this study the focus domain of dataset gathering is YouTube comments. The Dataset contains the comments of people over different Pakistani dramas and TV shows. The Dataset contains multi-class classification that is grouped The comments into positive, negative and neutral sentiment. In this Study comparative analysis is done for five supervised learning Algorithms including linear regression, SVM, KNN, Multi layer Perceptron and Na\"ive Bayes classifier. Accuracy, recall, precision and F-measure are used for measuring performance. Results show that accuracy of SVM is 64 percent, which is better than the rest of the list.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tooba Tehreem (1 paper)
Citations (9)

Summary

We haven't generated a summary for this paper yet.