Gaussian Universality in Neural Network Dynamics with Generalized Structured Input Distributions (2405.00642v3)
Abstract: Bridging the gap between the practical performance of deep learning and its theoretical foundations often involves analyzing neural networks through stochastic gradient descent (SGD). Expanding on previous research that focused on modeling structured inputs under a simple Gaussian setting, we analyze the behavior of a deep learning system trained on inputs modeled as Gaussian mixtures to better simulate more general structured inputs. Through empirical analysis and theoretical investigation, we demonstrate that under certain standardization schemes, the deep learning model converges toward Gaussian setting behavior, even when the input data follow more complex or real-world distributions. This finding exhibits a form of universality in which diverse structured distributions yield results consistent with Gaussian assumptions, which can support the theoretical understanding of deep learning models.
- H. S. Seung, H. Sompolinsky, and N. Tishby, Physical review A 45, 6056 (1992).
- A. Engel, Statistical mechanics of learning (Cambridge University Press, 2001).
- L. Zdeborová and F. Krzakala, Advances in Physics 65, 453 (2016).
- L. Zdeborová, Nature Physics 16, 602 (2020).
- S. B. Korada and A. Montanari, IEEE transactions on information theory 57, 2440 (2011).
- E. J. Candès and P. Sur, The Annals of Statistics 48, 27 (2020).
- Y. LeCun, http://yann. lecun. com/exdb/mnist/ (1998).
- D. Saad and S. A. Solla, Physical Review Letters 74, 4337 (1995).
- C. Fefferman, S. Mitter, and H. Narayanan, Journal of the American Mathematical Society 29, 983 (2016).
- G. E. Hinton and R. R. Salakhutdinov, science 313, 504 (2006).
- G. Peyré, Computer vision and image understanding 113, 249 (2009).
- M. A. Carreira-Perpinan, IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1318 (2000).
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org.
- M. Gabrié, Journal of Physics A: Mathematical and Theoretical 53, 223002 (2020).
- V. A. Marchenko and L. A. Pastur, Matematicheskii Sbornik 114, 507 (1967).