Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shaping Deep Feature Space towards Gaussian Mixture for Visual Classification (2011.09066v1)

Published 18 Nov 2020 in cs.CV

Abstract: The softmax cross-entropy loss function has been widely used to train deep models for various tasks. In this work, we propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification. Unlike the softmax cross-entropy loss, our method explicitly shapes the deep feature space towards a Gaussian Mixture distribution. With a classification margin and a likelihood regularization, the GM loss facilitates both high classification performance and accurate modeling of the feature distribution. The GM loss can be readily used to distinguish abnormal inputs, such as the adversarial examples, based on the discrepancy between feature distributions of the inputs and the training set. Furthermore, theoretical analysis shows that a symmetric feature space can be achieved by using the GM loss, which enables the models to perform robustly against adversarial attacks. The proposed model can be implemented easily and efficiently without using extra trainable parameters. Extensive evaluations demonstrate that the proposed method performs favorably not only on image classification but also on robust detection of adversarial examples generated by strong attacks under different threat models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.