Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remote Sensing Data Assimilation with a Chained Hydrologic-hydraulic Model for Flood Forecasting (2405.00567v1)

Published 1 May 2024 in eess.IV

Abstract: A chained hydrologic-hydraulic model is implemented using predicted runoff from a large-scale hydrologic model (namely ISBA-CTRIP) as inputs to local hydrodynamic models (TELEMAC-2D) to issue forecasts of water level and flood extent. The uncertainties in the hydrological forcing and in friction parameters are reduced by an Ensemble Kalman Filter that jointly assimilates in-situ water levels and flood extent maps derived from remote sensing observations. The data assimilation framework is cycled in a real-time forecasting configuration. A cycle consists of a reanalysis and a forecast phase. Over the analysis, observations up to the present are assimilated. An ensemble is then initialized from the last analyzed states and issued forecasts for next 36 hr. Three strategies of forcing data for this forecast are investigated: (i) using CTRIP runoff for reanalysis and forecast, (ii) using observed discharge for analysis, then CTRIP runoff for forecast and (iii) using observed discharge for reanalysis and keep a persistent discharge value for forecast. It was shown that the data assimilation strategy provides a reliable reanalysis in hindcast mode. The combination of observed discharge and CTRIP runoff provides the most accurate results. For all strategies, the quality of the forecast decreases as the lead time increases. When the errors in CTRIP forcing are non-stationary, the forecast capability may be reduced. This work demonstrates that the forcing provided by a hydrologic model, while imperfect, can be efficiently used as input to a hydraulic model to issue reanalysis and forecasts, thanks to the assimilation of in-situ and remote sensing observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. CRED, “Disasters in numbers,” Centre for Research on the Epidemiology of Disasters Institute Health and Society – UCLouvain, Technical Report RT-0300, 2021.
  2. R. Hostache, M. Chini, L. Giustarini, J. Neal, D. Kavetski, M. Wood, G. Corato, R.-M. Pelich, and P. Matgen, “Near-real-time assimilation of SAR-derived flood maps for improving flood forecasts,” Water Resources Research, vol. 54, no. 8, pp. 5516–5535, 2018.
  3. C. Di Mauro, R. Hostache, P. Matgen, R. Pelich, M. Chini, P. Jan van Leeuwen, N. Nichols, and G. Bloschl, “Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic-hydraulic forecasting model: a proof of concept.” Hydrol. Earth Syst. Sci., vol. 25, pp. 4081–4097, 2021.
  4. S. Grimaldi, Y. Li, V. R. Pauwels, and J. P. Walker, “Remote sensing-derived water extent and level to constrain hydraulic flood forecasting models: Opportunities and challenges,” Surveys in Geophysics, vol. 37, no. 5, pp. 977–1034, 2016.
  5. P.-A. Garambois and A.-S. Montazem, “Variational estimation of effective channel and ungauged anabranching river discharge from multi-satellite water heights of different spatial sparsity,” Journal of hydrology, vol. 581, p. 124409, 2020.
  6. A. Dasgupta, R. Hostache, R. Ramsankaran, S. Grimaldi, P. Matgen, M. Chini, V. R. Pauwels, and J. P. Walker, “Chapter 12 - earth observation and hydraulic data assimilation for improved flood inundation forecasting,” in Earth Observation for Flood Applications, ser. Earth Observation, G. J.-P. Schumann, Ed.   Elsevier, 2021, pp. 255–294. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128194126000122
  7. S. Martinis, C. Kuenzer, and A. Twele, “Flood studies using synthetic aperture radar data,” in Remote Sensing Handbook.   CRC Press, 2015, pp. 145–173.
  8. B. Revilla-Romero, N. Wanders, P. Burek, P. Salamon, and A. de Roo, “Integrating remotely sensed surface water extent into continental scale hydrology,” Journal of hydrology, vol. 543, pp. 659–670, 2016.
  9. T. H. Nguyen, S. Ricci, A. Piacentini, C. Fatras, P. Kettig, G. Blanchet, S. Peña Luque, and S. Baillarin, “Dual State-Parameter Assimilation of SAR-Derived Wet Surface Ratio for Improving Fluvial Flood Reanalysis,” Water Resources Research, vol. 58, no. 11, p. e2022WR033155, 2022, e2022WR033155 2022WR033155. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022WR033155
  10. S. Munier and B. Decharme, “River network and hydro-geomorphological parameters at 1/121121/121 / 12° resolution for global hydrological and climate studies,” Earth System Science Data, vol. 14, no. 5, pp. 2239–2258, 2022. [Online]. Available: https://essd.copernicus.org/articles/14/2239/2022/
  11. B. Decharme, C. Delire, M. Minvielle, J. Colin, J.-P. Vergnes, A. Alias, D. Saint-Martin, R. Séférian, S. Sénési, and A. Voldoire, “Recent changes in the isba-ctrip land surface system for use in the cnrm-cm6 climate model and in global off-line hydrological applications,” Journal of Advances in Modeling Earth Systems, vol. 11, no. 5, pp. 1207–1252, 2019.
  12. J. Noilhan and S. Planton, “A simple parameterization of land surface processes for meteorological models,” Monthly weather review, vol. 117, no. 3, pp. 536–549, 1989.
  13. T. Oki and Y. Sud, “Design of total runoff integrating pathways (trip)—a global river channel network,” Earth interactions, vol. 2, no. 1, pp. 1–37, 1998.
  14. B. Decharme, R. Alkama, F. Papa, S. Faroux, H. Douville, and C. Prigent, “Global off-line evaluation of the isba-trip flood model,” Climate Dynamics, vol. 38, pp. 1389–1412, 2012.
  15. A. Besnard and N. Goutal, “Comparaison de modèles 1d à casiers et 2d pour la modélisation hydraulique d’une plaine d’inondation–cas de la garonne entre tonneins et la réole,” La Houille Blanche, no. 3, pp. 42–47, 2011.
  16. T. H. Nguyen, S. Ricci, C. Fatras, A. Piacentini, A. Delmotte, E. Lavergne, and P. Kettig, “Improvement of Flood Extent Representation With Remote Sensing Data and Data Assimilation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–22, 2022.
  17. P.-G. Gauckler, “Etudes théoriques et pratiques sur l’ecoulement et le mouvement des eaux,” Comptes Rendus de l’Académie des Sciences Paris, vol. 64, pp. 818–822, 1867.
  18. T. H. Nguyen, S. Ricci, A. Piacentini, E. Simon, R. Rodriguez Suquet, and S. Pena Luque, “Gaussian Anamorphosis for Ensemble Kalman Filter Analysis of SAR-Derived Wet Surface Ratio Observations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, no. 1-21, 2023.
  19. E. Simon and L. Bertino, “Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment,” Ocean Science (OS), 03 2009.
  20. ——, “Gaussian anamorphosis extension of the DEnKF for combined state parameter estimation: Application to a 1D ocean ecosystem model,” Journal of Marine Systems - J MARINE SYST, vol. 89, pp. 1–18, 01 2012.
  21. A.-M. Fromental, A. Cazaubon, M. Daubas, R. Lavie, P.-J. L. Dirach, C. Moulin, C. Negre, F. Peron, O. Piotte, R. Puechberty, M. Semery, J. Valembois, and F. Zuber, “La plateforme nationale collaborative des repères de crues, bilan de 7 ans d’existence et perspectives,” LHB, vol. 0, no. 0, p. 2333410, 2024. [Online]. Available: https://doi.org/10.1080/27678490.2024.2333410

Summary

We haven't generated a summary for this paper yet.