Reducing Uncertainties of a Chained Hydrologic-hydraulic Model to Improve Flood Forecasting Using Multi-source Earth Observation Data (2306.10059v1)
Abstract: The challenges in operational flood forecasting lie in producing reliable forecasts given constrained computational resources and within processing times that are compatible with near-real-time forecasting. Flood hydrodynamic models exploit observed data from gauge networks, e.g. water surface elevation (WSE) and/or discharge that describe the forcing time-series at the upstream and lateral boundary conditions of the model. A chained hydrologic-hydraulic model is thus interesting to allow extended lead time forecasts and overcome the limits of forecast when using only observed gauge measurements. This research work focuses on comprehensively reducing the uncertainties in the model parameters, hydraulic state and especially the forcing data in order to improve the overall flood reanalysis and forecast performance. It aims at assimilating two main complementary EO data sources, namely in-situ WSE and SAR-derived flood extent observations.
- T. Huang, C. David, C. Oadia, J. T. Roberts, S. V. Kumar, P. Stackhouse, D. Borges, S. Baillarin, G. Blanchet, and P. Kettig, “An earth system digital twin for flood prediction and analysis,” in IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 4735–4738, IEEE, 2022.
- P. Kettig, S. Baillarin, G. Blanchet, C. Taillan, S. Ricci, T.-H. Nguyen, T. Huang, A. Altinok, N. T. Chung, G. Valladeau, R. Goeury, and A. Roumagnac, “The SCO-FLOODDAM Project: New Observing Strategies for Flood Detection, Alert and Rapid Mapping,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 1464–1467, 2021.
- P. Nguyen, A. Thorstensen, S. Sorooshian, K. Hsu, A. AghaKouchak, B. Sanders, V. Koren, Z. Cui, and M. Smith, “A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling,” Journal of Hydrology, vol. 541, pp. 401–420, 2016.
- S. Grimaldi, G.-P. Schumann, A. Shokri, J. Walker, and V. Pauwels, “Challenges, opportunities, and pitfalls for global coupled hydrologic-hydraulic modeling of floods,” Water Resources Research, vol. 55, no. 7, pp. 5277–5300, 2019.
- R. Hostache, M. Chini, L. Giustarini, J. Neal, D. Kavetski, M. Wood, G. Corato, R.-M. Pelich, and P. Matgen, “Near-real-time assimilation of SAR-derived flood maps for improving flood forecasts,” Water Resources Research, vol. 54, no. 8, pp. 5516–5535, 2018.
- C. Di Mauro, R. Hostache, P. Matgen, R. Pelich, M. Chini, P. Jan van Leeuwen, N. Nichols, and G. Bloschl, “Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic-hydraulic forecasting model: a proof of concept.,” Hydrol. Earth Syst. Sci., vol. 25, pp. 4081–4097, 2021.
- C. H. David, D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout, “River network routing on the NHDPlus dataset,” Journal of Hydrometeorology, vol. 12, no. 5, pp. 913–934, 2011.
- F. Habets, A. Boone, J.-L. Champeaux, P. Etchevers, L. Franchisteguy, E. Leblois, E. Ledoux, P. Le Moigne, E. Martin, S. Morel, et al., “The SAFRAN-ISBA-MODCOU hydrometeorological model applied over france,” Journal of Geophysical Research: Atmospheres, vol. 113, no. D6, 2008.
- Wiley Online Library, 2007.
- T. H. Nguyen, S. Ricci, C. Fatras, A. Piacentini, A. Delmotte, E. Lavergne, and P. Kettig, “Improvement of flood extent representation with remote sensing data and data assimilation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–22, 2022.
- T. H. Nguyen, S. Ricci, A. Piacentini, C. Fatras, P. Kettig, G. Blanchet, S. Peña Luque, and S. Baillarin, “Dual State-Parameter Assimilation of SAR-Derived Wet Surface Ratio for Improving Fluvial Flood Reanalysis,” Water Resources Research, vol. 58, no. 11, p. e2022WR033155, 2022. e2022WR033155 2022WR033155.
- T. H. Nguyen, S. Ricci, A. Piacentini, E. Simon, R. Rodriguez Suquet, and S. Peña Luque, “Gaussian anamorphosis for ensemble kalman filter analysis of SAR-derived wet surface ratio observations,” arXiv preprint arXiv:2304.01058, 2023.