Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nuclear mass predictions with anisotropic kernel ridge regression (2405.00356v1)

Published 1 May 2024 in nucl-th

Abstract: The anisotropic kernel ridge regression (AKRR) approach in nuclear mass predictions is developed by introducing the anisotropic kernel function into the kernel ridge regression (KRR) approach, without introducing new weight parameter or input in the training. A combination of double two-dimensional Gaussian kernel function is adopted, and the corresponding hyperparameters are optimized carefully by cross-validations. The anisotropic kernel shows cross-shape pattern, which highlights the correlations among the isotopes with the same proton number, and that among the isotones with the same neutron number. Significant improvements are achieved by the AKRR approach in both the interpolation and the extrapolation predictions of nuclear masses comparing with the original KRR approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. doi:10.1103/RevModPhys.75.1021.
  2. doi:https://doi.org/10.1016/j.ppnp.2021.103882.
  3. doi:10.1126/science.1225636.
  4. doi:10.1038/nature12226.
  5. doi:10.1103/PhysRevC.96.014310.
  6. doi:https://doi.org/10.1016/j.ppnp.2015.09.001.
  7. doi:10.3847/1538-4357/ac042f.
  8. doi:10.3847/1538-4357/aca526.
  9. NNDC, National Nuclear Data Center (2024). [link]. URL https://www.nndc.bnl.gov/
  10. doi:10.1088/1674-1137/abddaf.
  11. doi:10.1007/BF01337700.
  12. doi:https://doi.org/10.1016/0370-2693(96)01071-4.
  13. doi:10.1143/PTP.113.305.
  14. doi:https://doi.org/10.1016/j.physletb.2014.05.049.
  15. doi:https://doi.org/10.1016/j.adt.2015.10.002.
  16. doi:10.1103/PhysRevLett.102.152503.
  17. doi:10.1103/PhysRevLett.102.242501.
  18. doi:10.1038/nature11188.
  19. doi:10.1143/PTP.113.785.
  20. doi:https://doi.org/10.1016/j.physletb.2013.09.017.
  21. doi:10.1016/j.adt.2017.09.001.
  22. doi:10.1007/s11433-019-9422-1.
  23. doi:10.1103/PhysRevC.104.054312.
  24. doi:https://doi.org/10.1016/j.adt.2022.101488.
  25. doi:10.1103/PhysRevC.106.014316.
  26. doi:10.1103/PhysRevC.92.035807.
  27. doi:https://doi.org/10.1016/j.scib.2023.03.004.
  28. doi:10.1103/RevModPhys.91.045002.
  29. doi:10.1103/RevModPhys.94.031003.
  30. doi:10.1007/s11433-023-2116-0.
  31. doi:10.1016/j.ppnp.2023.104084.
  32. doi:10.1103/PhysRevC.101.051301.
  33. doi:https://doi.org/10.1016/j.physletb.2021.136387.
  34. doi:10.1103/PhysRevC.109.024310.
  35. doi:10.1103/PhysRevC.84.051303.
  36. doi:10.1016/j.scib.2018.05.009.
  37. doi:10.1103/PhysRevC.93.014311.
  38. doi:10.1103/PhysRevC.98.034318.
  39. doi:10.1103/PhysRevC.106.L021303.
  40. doi:10.1103/PhysRevLett.122.062502.
  41. doi:10.3390/universe7050131.
  42. doi:10.1017/CBO9781139176224.
  43. doi:https://doi.org/10.1016/j.physletb.2022.137394.
  44. doi:10.3390/sym14061078.
  45. doi:10.1088/1674-1137/acc791.
  46. doi:10.1103/PhysRevC.105.L031303.
  47. doi:10.1088/1674-1137/ac6154.
  48. doi:10.1007/s41365-024-01379-4.
  49. doi:10.1088/1572-9494/ac763b.
  50. doi:10.3389/fphy.2023.1061042.
  51. doi:https://doi.org/10.1016/j.ppnp.2019.02.008.
  52. doi:10.1103/RevModPhys.93.015002.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube