Cosmic Ray-Boosted Dark Matter at IceCube (2405.00086v1)
Abstract: Cosmic ray (CR) upscattering of dark matter is considered as one of the most straightforward mechanisms to accelerate ambient dark matter, making it detectable at high threshold, large volume experiments. In this work, we revisit CR upscattered dark matter signals at the IceCube detector, focusing on lower energy data than was considered before. We consider both scattering with electrons and nuclei. In the latter, we include both elastic and deep-inelastic scattering computations. As concrete examples, we consider two benchmark models; Fermion dark matter with vector and scalar mediators. We compare our model projections with the most current constraints and show that the IceCube detector can detect CR-boosted dark matter especially with masses below $\sim$ 100 keV when scattering with electrons and $\sim$ MeV in the nucleon scattering case.
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- J. Cooley et al., (2022), arXiv:2209.07426 [hep-ph] .
- R. Essig et al., in Snowmass 2021 (2022) arXiv:2203.08297 [hep-ph] .
- T. Bringmann and M. Pospelov, Phys. Rev. Lett. 122, 171801 (2019), arXiv:1810.10543 [hep-ph] .
- C. Cappiello and J. F. Beacom, Phys. Rev. D 100, 103011 (2019), arXiv:1906.11283 [hep-ph] .
- T. N. Maity and R. Laha, (2022), arXiv:2210.01815 [hep-ph] .
- X. Cui et al. (PandaX-II), Phys. Rev. Lett. 128, 171801 (2022), arXiv:2112.08957 [hep-ex] .
- R. Xu et al. (CDEX), Phys. Rev. D 106, 052008 (2022), arXiv:2201.01704 [hep-ex] .
- N. Y. Agafonova et al. (NEWSdm), (2023), arXiv:2305.00112 [astro-ph.IM] .
- M. Andriamirado et al. (PROSPECT, (PROSPECT Collaboration)*), Phys. Rev. D 104, 012009 (2021), arXiv:2104.11219 [hep-ex] .
- K. Abe et al. (Super-Kamiokande), Phys. Rev. Lett. 130, 031802 (2023), arXiv:2209.14968 [hep-ex] .
- X. Shang et al. (PandaX), (2024), arXiv:2403.08361 [hep-ex] .
- C. Kouvaris, Phys. Rev. D 92, 075001 (2015), arXiv:1506.04316 [hep-ph] .
- J.-T. Li and T. Lin, Phys. Rev. D 101, 103034 (2020), arXiv:2002.04625 [astro-ph.CO] .
- A. Das and M. Sen, Phys. Rev. D 104, 075029 (2021), arXiv:2104.00027 [hep-ph] .
- A. Archer et al. (VERITAS), Phys. Rev. D 98, 062004 (2018), arXiv:1808.10028 [astro-ph.HE] .
- A. W. Strong and I. V. Moskalenko, Astrophys. J. 509, 212 (1998), arXiv:astro-ph/9807150 .
- T. Emken and C. Kouvaris, Phys. Rev. D 97, 115047 (2018), arXiv:1802.04764 [hep-ph] .
- M. G. Aartsen et al. (IceCube), Phys. Rev. D 91, 022001 (2015), arXiv:1410.1749 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Science 342, 1242856 (2013), arXiv:1311.5238 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), Eur. Phys. J. C 74, 2938 (2014), [Erratum: Eur.Phys.J.C 79, 124 (2019)], arXiv:1402.3460 [astro-ph.CO] .
- M. G. Aartsen et al. (IceCube), Eur. Phys. J. C 76, 133 (2016), arXiv:1511.01350 [astro-ph.HE] .
- P. Coloma, Eur. Phys. J. C 79, 748 (2019), arXiv:1906.02106 [hep-ph] .
- R. Abbasi et al. (IceCube), Phys. Rev. Lett. 128, 051101 (2022), arXiv:2109.13719 [astro-ph.HE] .
- I. Angeli, Atomic Data and Nuclear Data Tables 87, 185 (2004).
- J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012), arXiv:1305.7513 [hep-ex] .
- Q. An et al. (DAMPE), Sci. Adv. 5, eaax3793 (2019), arXiv:1909.12860 [astro-ph.HE] .
- B. A. Dobrescu and C. Frugiuele, Phys. Rev. Lett. 113, 061801 (2014), arXiv:1404.3947 [hep-ph] .
- Y. S. Yoon et al., Astrophys. J. 839, 5 (2017), arXiv:1704.02512 [astro-ph.HE] .
- A. Ishihara (IceCube), PoS ICRC2019, 1031 (2021), arXiv:1908.09441 [astro-ph.HE] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.