Density of States, Black Holes and the Emergent String Conjecture (2405.00083v2)
Abstract: We study universal features of the density of one-particle states $\rho(E)$ in weakly coupled theories of gravity at energies above the quantum gravity cutoff $\Lambda$, defined as the scale suppressing higher-derivative corrections to the Einstein--Hilbert action. Using thermodynamic properties of black holes, we show that in asymptotically flat spacetimes, certain features of $\rho(E)$ above the black hole threshold $M_{\rm min}$ are an indicator for the existence of large extra dimensions, and cannot be reproduced by any lower-dimensional field theory with finitely many fields satisfying the weak energy condition. Based on the properties of gravitational scattering amplitudes, we argue that there needs to exist a (possibly higher-dimensional) effective description of gravity valid up to the cutoff $\Lambda$. Combining this with thermodynamic arguments we demonstrate that $\rho(E)$ has to grow exponentially for energies $\Lambda \ll E \ll M_{\rm min}$. Furthermore we show that the tension of any weakly coupled $p$-brane with $p\geq 1$ is bounded from below by $\Lambda{p+1}$. We use this to argue that any tower of weakly coupled states with mass below $\Lambda$ has to be a Kaluza--Klein (KK) tower. Altogether these results indicate that in gravitational weak-coupling limits the lightest tower of states is either a KK tower, or has an exponentially growing degeneracy thereby resembling a string tower. This provides evidence for the Emergent String Conjecture without explicitly relying on string theory or supersymmetry.
- C. Vafa, “The String landscape and the swampland,” arXiv:hep-th/0509212 [hep-th].
- H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl. Phys. B766 (2007) 21–33, arXiv:hep-th/0605264 [hep-th].
- E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 no. 6, (2019) 1900037, arXiv:1903.06239 [hep-th].
- M. van Beest, J. Calderón-Infante, D. Mirfendereski, and I. Valenzuela, “Lectures on the Swampland Program in String Compactifications,” arXiv:2102.01111 [hep-th].
- N. B. Agmon, A. Bedroya, M. J. Kang, and C. Vafa, “Lectures on the string landscape and the Swampland,” arXiv:2212.06187 [hep-th].
- G. Dvali, “Black Holes and Large N Species Solution to the Hierarchy Problem,” Fortsch. Phys. 58 (2010) 528–536, arXiv:0706.2050 [hep-th].
- G. Dvali and M. Redi, “Black Hole Bound on the Number of Species and Quantum Gravity at LHC,” Phys. Rev. D 77 (2008) 045027, arXiv:0710.4344 [hep-th].
- G. Dvali and D. Lust, “Evaporation of Microscopic Black Holes in String Theory and the Bound on Species,” Fortsch. Phys. 58 (2010) 505–527, arXiv:0912.3167 [hep-th].
- G. Dvali and C. Gomez, “Species and Strings,” arXiv:1004.3744 [hep-th].
- G. Dvali, C. Gomez, and D. Lust, “Black Hole Quantum Mechanics in the Presence of Species,” Fortsch. Phys. 61 (2013) 768–778, arXiv:1206.2365 [hep-th].
- D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Moduli-dependent Species Scale,” arXiv:2212.06841 [hep-th].
- D. van de Heisteeg, C. Vafa, and M. Wiesner, “Bounds on Species Scale and the Distance Conjecture,” Fortsch. Phys. 71 no. 10-11, (2023) 2300143, arXiv:2303.13580 [hep-th].
- N. Cribiori, M. Dierigl, A. Gnecchi, D. Lust, and M. Scalisi, “Large and small non-extremal black holes, thermodynamic dualities, and the Swampland,” JHEP 10 (2022) 093, arXiv:2202.04657 [hep-th].
- D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Bounds on field range for slowly varying positive potentials,” JHEP 02 (2024) 175, arXiv:2305.07701 [hep-th].
- N. Cribiori and D. Lüst, “A Note on Modular Invariant Species Scale and Potentials,” Fortsch. Phys. 71 no. 10-11, (2023) 2300150, arXiv:2306.08673 [hep-th].
- D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Species Scale in Diverse Dimensions,” arXiv:2310.07213 [hep-th].
- A. Castellano, A. Herráez, and L. E. Ibáñez, “On the Species Scale, Modular Invariance and the Gravitational EFT expansion,” arXiv:2310.07708 [hep-th].
- J. Calderón-Infante, M. Delgado, and A. M. Uranga, “Emergence of species scale black hole horizons,” JHEP 01 (2024) 003, arXiv:2310.04488 [hep-th].
- A. Bedroya, C. Vafa, and D. H. Wu, “The Tale of Three Scales: the Planck, the Species, and the Black Hole Scales,” arXiv:2403.18005 [hep-th].
- R. Gregory and R. Laflamme, “Black strings and p-branes are unstable,” Phys. Rev. Lett. 70 (1993) 2837–2840, arXiv:hep-th/9301052.
- S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings from infinite distance limits,” JHEP 02 (2022) 190, arXiv:1910.01135 [hep-th].
- R. Álvarez-García, D. Kläwer, and T. Weigand, “Membrane limits in quantum gravity,” Phys. Rev. D 105 no. 6, (2022) 066024, arXiv:2112.09136 [hep-th].
- S.-J. Lee, W. Lerche, and T. Weigand, “Tensionless Strings and the Weak Gravity Conjecture,” JHEP 10 (2018) 164, arXiv:1808.05958 [hep-th].
- S.-J. Lee, W. Lerche, and T. Weigand, “A Stringy Test of the Scalar Weak Gravity Conjecture,” Nucl. Phys. B938 (2019) 321–350, arXiv:1810.05169 [hep-th].
- S.-J. Lee, W. Lerche, and T. Weigand, “Modular Fluxes, Elliptic Genera, and Weak Gravity Conjectures in Four Dimensions,” JHEP 08 (2019) 104, arXiv:1901.08065 [hep-th].
- S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings, duality and weak coupling limits for two-form fields,” JHEP 02 (2022) 096, arXiv:1904.06344 [hep-th].
- F. Baume, F. Marchesano, and M. Wiesner, “Instanton Corrections and Emergent Strings,” JHEP 04 (2020) 174, arXiv:1912.02218 [hep-th].
- D. Klaewer, S.-J. Lee, T. Weigand, and M. Wiesner, “Quantum corrections in 4d N𝑁Nitalic_N = 1 infinite distance limits and the weak gravity conjecture,” JHEP 03 (2021) 252, arXiv:2011.00024 [hep-th].
- S.-J. Lee, W. Lerche, and T. Weigand, “Physics of infinite complex structure limits in eight dimensions,” JHEP 06 (2022) 042, arXiv:2112.08385 [hep-th].
- M. Wiesner, “Light strings and strong coupling in F-theory,” JHEP 04 (2023) 088, arXiv:2210.14238 [hep-th].
- A. Bedroya, S. Raman, and H.-C. Tarazi, “Non-BPS path to the string lamppost,” arXiv:2303.13585 [hep-th].
- M. Etheredge, B. Heidenreich, J. McNamara, T. Rudelius, I. Ruiz, and I. Valenzuela, “Running decompactification, sliding towers, and the distance conjecture,” JHEP 12 (2023) 182, arXiv:2306.16440 [hep-th].
- R. Álvarez-García, S.-J. Lee, and T. Weigand, “Non-minimal Elliptic Threefolds at Infinite Distance II: Asymptotic Physics,” arXiv:2312.11611 [hep-th].
- S. Lanza, F. Marchesano, L. Martucci, and I. Valenzuela, “The EFT stringy viewpoint on large distances,” JHEP 09 (2021) 197, arXiv:2104.05726 [hep-th].
- T. Rudelius, “Dimensional reduction and (Anti) de Sitter bounds,” JHEP 08 (2021) 041, arXiv:2101.11617 [hep-th].
- M. Etheredge, B. Heidenreich, S. Kaya, Y. Qiu, and T. Rudelius, “Sharpening the Distance Conjecture in diverse dimensions,” JHEP 12 (2022) 114, arXiv:2206.04063 [hep-th].
- M. Montero, C. Vafa, and I. Valenzuela, “The dark dimension and the Swampland,” JHEP 02 (2023) 022, arXiv:2205.12293 [hep-th].
- T. Rudelius, “Asymptotic scalar field cosmology in string theory,” JHEP 10 (2022) 018, arXiv:2208.08989 [hep-th].
- A. Bedroya and Y. Hamada, “Dualities from Swampland principles,” JHEP 01 (2024) 086, arXiv:2303.14203 [hep-th].
- I. Basile, D. Lust, and C. Montella, “Shedding black hole light on the emergent string conjecture,” arXiv:2311.12113 [hep-th].
- N. Cribiori, D. Lust, and C. Montella, “Species Entropy and Thermodynamics,” arXiv:2305.10489 [hep-th].
- I. Basile, N. Cribiori, D. Lust, and C. Montella, “Minimal Black Holes and Species Thermodynamics,” arXiv:2401.06851 [hep-th].
- J. Polchinski and A. Strominger, “Effective string theory,” Phys. Rev. Lett. 67 (1991) 1681–1684.
- D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl. Phys. B 303 (1988) 407–454.
- R. Brustein, G. Dvali, and G. Veneziano, “A Bound on the effective gravitational coupling from semiclassical black holes,” JHEP 10 (2009) 085, arXiv:0907.5516 [hep-th].
- T. Banks and W. Fischler, “A Model for high-energy scattering in quantum gravity,” arXiv:hep-th/9906038.
- I. Bah, Y. Chen, and J. Maldacena, “Estimating global charge violating amplitudes from wormholes,” JHEP 04 (2023) 061, arXiv:2212.08668 [hep-th].
- D. Mitchell and N. Turok, “Statistical Mechanics of Cosmic Strings,” Phys. Rev. Lett. 58 (1987) 1577.
- D. Mitchell and N. Turok, “Statistical Properties of Cosmic Strings,” Nucl. Phys. B 294 (1987) 1138–1163.
- A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B 379 (1996) 99–104, arXiv:hep-th/9601029.
- J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.
- C. F. Cota, A. Mininno, T. Weigand, and M. Wiesner, “The asymptotic Weak Gravity Conjecture for open strings,” JHEP 11 (2022) 058, arXiv:2208.00009 [hep-th].
- L. Martucci, N. Risso, A. Valenti, and L. Vecchi, “Wormholes in the axiverse, and the species scale,” arXiv:2404.14489 [hep-th].
- D. J. Gross, “Two-dimensional QCD as a string theory,” Nucl. Phys. B 400 (1993) 161–180, arXiv:hep-th/9212149.
- G. T. Horowitz and J. Polchinski, “Selfgravitating fundamental strings,” Phys. Rev. D 57 (1998) 2557–2563, arXiv:hep-th/9707170.
- Y. Chen, J. Maldacena, and E. Witten, “On the black hole/string transition,” JHEP 01 (2023) 103, arXiv:2109.08563 [hep-th].
- A. Sen, “Logarithmic Corrections to Schwarzschild and Other Non-extremal Black Hole Entropy in Different Dimensions,” JHEP 04 (2013) 156, arXiv:1205.0971 [hep-th].
- J. Calderón-Infante, A. Castellano, A. Herráez, and L. E. Ibáñez, “Entropy bounds and the species scale distance conjecture,” JHEP 01 (2024) 039, arXiv:2306.16450 [hep-th].
- A. M. Polyakov, “Quantum Geometry of Bosonic Strings,” Phys. Lett. B 103 (1981) 207–210.
- S. Hamidi and C. Vafa, “Interactions on Orbifolds,” Nucl. Phys. B 279 (1987) 465–513.
- S. Caron-Huot, Z. Komargodski, A. Sever, and A. Zhiboedov, “Strings from Massive Higher Spins: The Asymptotic Uniqueness of the Veneziano Amplitude,” JHEP 10 (2017) 026, arXiv:1607.04253 [hep-th].
- F. A. Cerulus and A. Martin, “A lower bound for large-angle elastic scattering at high energies,” Phys. Lett. 8 (1964) 80–82.
- L. Buoninfante, J. Tokuda, and M. Yamaguchi, “New lower bounds on scattering amplitudes: non-locality constraints,” JHEP 01 (2024) 082, arXiv:2305.16422 [hep-th].
- D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197 (1987) 129–134.
- P. F. Mende and H. Ooguri, “Borel Summation of String Theory for Planck Scale Scattering,” Nucl. Phys. B 339 (1990) 641–662.
- D. Amati, M. Ciafaloni, and G. Veneziano, “Can Space-Time Be Probed Below the String Size?,” Phys. Lett. B 216 (1989) 41–47.
- A. Bedroya, “High energy scattering and string/black hole transition,” arXiv:2211.17162 [hep-th].
- S. B. Giddings and M. Srednicki, “High-energy gravitational scattering and black hole resonances,” Phys. Rev. D 77 (2008) 085025, arXiv:0711.5012 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.