Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Synthesizing the Born rule with reinforcement learning (2404.19011v2)

Published 29 Apr 2024 in quant-ph

Abstract: According to the subjective Bayesian interpretation of quantum theory (QBism), quantum mechanics is a tool that an agent would be wise to use when making bets about natural phenomena. In particular, the Born rule is understood to be a decision-making norm, an ideal which one should strive to meet even if usually falling short in practice. What is required for an agent to make decisions that conform to quantum mechanics? Here we investigate how a realistic (hence non-ideal) agent might deviate from the Born rule in its decisions. To do so we simulate a simple agent as a reinforcement-learning algorithm that makes `bets' on the outputs of a symmetric informationally-complete measurement (SIC) and adjusts its decisions in order to maximize its expected return. We quantify how far the algorithm's decision-making behavior departs from the ideal form of the Born rule and investigate the limiting factors. We propose an experimental implementation of the scenario using heralded single photons.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube