Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Quantum State Designs with Clifford Enhanced Matrix Product States (2404.18751v2)

Published 29 Apr 2024 in quant-ph

Abstract: Nonstabilizerness, or `magic', is a critical quantum resource that, together with entanglement, characterizes the non-classical complexity of quantum states. Here, we address the problem of quantifying the average nonstabilizerness of random Matrix Product States (RMPS). RMPS represent a generalization of random product states featuring bounded entanglement that scales logarithmically with the bond dimension $\chi$. We demonstrate that the $2$-Stabilizer R\'enyi Entropy converges to that of Haar random states as $N/\chi2$, where $N$ is the system size. This indicates that MPS with a modest bond dimension are as magical as generic states. Subsequently, we introduce the ensemble of Clifford enhanced Matrix Product States ($\mathcal{C}$MPS), built by the action of Clifford unitaries on RMPS. Leveraging our previous result, we show that $\mathcal{C}$MPS can approximate $4$-spherical designs with arbitrary accuracy. Specifically, for a constant $N$, $\mathcal{C}$MPS become close to $4$-designs with a scaling as $\chi{-2}$. Our findings indicate that combining Clifford unitaries with polynomially complex tensor network states can generate highly non-trivial quantum states.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com