Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Diversification for infinite-mean Pareto models without risk aversion (2404.18467v3)

Published 29 Apr 2024 in q-fin.PM and econ.TH

Abstract: We study stochastic dominance between portfolios of independent and identically distributed (iid) extremely heavy-tailed (i.e., infinite-mean) Pareto random variables. With the notion of majorization order, we show that a more diversified portfolio of iid extremely heavy-tailed Pareto random variables is larger in the sense of first-order stochastic dominance. This result is further generalized for Pareto random variables caused by triggering events, random variables with tails being Pareto, bounded Pareto random variables, and positively dependent Pareto random variables. These results provide an important implication in investment: Diversification of extremely heavy-tailed Pareto profits uniformly increases investors' profitability, leading to a diversification benefit. Remarkably, different from the finite-mean setting, such a diversification benefit does not depend on the decision maker's risk aversion.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.