Fast Monte Carlo Analysis for 6-DoF Powered-Descent Guidance via GPU-Accelerated Sequential Convex Programming (2404.18034v1)
Abstract: We introduce a GPU-accelerated Monte Carlo framework for nonconvex, free-final-time trajectory optimization problems. This framework makes use of the prox-linear method, which belongs to the larger family of sequential convex programming (SCP) algorithms, in conjunction with a constraint reformulation that guarantees inter-sample constraint satisfaction. Key features of this framework are: (1) continuous-time constraint satisfaction; (2) a matrix-inverse-free solution method; (3) the use of the proportional-integral projected gradient (PIPG) method, a first-order convex optimization solver, customized to the convex subproblem at hand; and, (4) an end-to-end, library-free implementation of the algorithm. We demonstrate this GPU-based framework on the 6-DoF powered-descent guidance problem, and show that it is faster than an equivalent serial CPU implementation for Monte Carlo simulations with over 1000 runs. To the best of our knowledge, this is the first GPU-based implementation of a general-purpose nonconvex trajectory optimization solver.
- Malyuta, D., Reynolds, T., Szmuk, M., Mesbahi, M., Açıkmeşe, Behçet., and Carson III, J. M., “Discretization performance and accuracy analysis for the rocket powered descent guidance problem,” AIAA SciTech 2019 Forum, Reston, Virginia, 2019, pp. 1–20. 10.2514/6.2019-0925.
- Langston, J., “Microsoft announces new supercomputer, lays out vision for future AI work,” https://news.microsoft.com/source/features/innovation/openai-azure-supercomputer/, Accessed: 2023-12-02.
- Shilov, A., “Tesla’s $300 million AI cluster is going live today,” , Aug 2023. URL https://www.tomshardware.com/news/teslas-dollar300-million-ai-cluster-is-going-live-today.
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” , 2015. URL https://www.tensorflow.org/, software available from tensorflow.org.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” Advances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
- Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q., “JAX: composable transformations of Python+NumPy programs,” , 2018. URL http://github.com/google/jax.
- Ilg, M., Rogers, J., and Costello, M., “Projectile Monte-Carlo Trajectory Analysis Using a Graphics Processing Unit,” AIAA Atmospheric Flight Mechanics Conference, Guidance, Navigation, and Control and Co-located Conferences, American Institute of Aeronautics and Astronautics, 2011, pp. 1–18.
- Rastgar, F., Masnavi, H., Kruusamäe, K., Aabloo, A., and Singh, A. K., “GPU Accelerated Batch Trajectory Optimization for Autonomous Navigation,” 2023 American Control Conference (ACC), IEEE, 2023, pp. 718–725.
- Elango, P., Luo, D., Kamath, A. G., Uzun, S., Kim, T., and Açıkmeşe, B., “Successive Convexification for Trajectory Optimization with Continuous-Time Constraint Satisfaction,” , 2024. 10.48550/ARXIV.2404.16826, URL https://arxiv.org/abs/2404.16826.
- Szmuk, M., Reynolds, T. P., and Açıkmeşe, B., “Successive Convexification for Real-Time Six-Degree-of-Freedom Powered Descent Guidance with State-Triggered Constraints,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020a, pp. 1399–1413.
- Blackmore, L., “Autonomous precision landing of space rockets,” in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2016 Symposium, Vol. 46, 2016, pp. 15–20.
- Martin, M. S., Mendeck, G. F., Brugarolas, P. B., Singh, G., Serricchio, F., Lee, S. W., Wong, E. C., and Essmiller, J. C., “In-flight experience of the Mars Science Laboratory guidance, navigation, and control system for entry, descent, and landing,” CEAS Space Journal, Vol. 7, 2015, pp. 119–142.
- Carson, J. M., Munk, M. M., Sostaric, R. R., Estes, J. N., Amzajerdian, F., Blair, J. B., Rutishauser, D. K., Restrepo, C. I., Dwyer-Cianciolo, A. M., Chen, G., et al., “The SPLICE project: Continuing NASA development of GN&C technologies for safe and precise landing,” AIAA SciTech 2019 Forum, 2019, p. 0660.
- Malyuta, D., Yu, Y., Elango, P., and Açıkmeşe, B., “Advances in trajectory optimization for space vehicle control,” Annual Reviews in Control, Vol. 52, 2021, pp. 282–315.
- Malyuta, D., Reynolds, T. P., Szmuk, M., Lew, T., Bonalli, R., Pavone, M., and Açıkmeşe, B., “Convex Optimization for Trajectory Generation: A Tutorial on Generating Dynamically Feasible Trajectories Reliably and Efficiently,” IEEE Control Systems, Vol. 42, No. 5, 2022, pp. 40–113. 10.1109/mcs.2022.3187542.
- Zhang, X., “OpenBLAS,” https://github.com/OpenMathLib/OpenBLAS, 2023.
- Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, Vol. 12, No. 4, 2020, pp. 637–672. 10.1007/s12532-020-00179-2.
- Domahidi, A., Chu, E., and Boyd, S., “ECOS: An SOCP solver for embedded systems,” 2013 European Control Conference (ECC), IEEE, 2013, pp. 3071–3076.
- Schubiger, M., Banjac, G., and Lygeros, J., “GPU acceleration of ADMM for large-scale quadratic programming,” Journal of Parallel and Distributed Computing, Vol. 144, 2020, pp. 55–67. 10.1016/j.jpdc.2020.05.021.
- Lofberg, J., “YALMIP: A toolbox for modeling and optimization in MATLAB,” 2004 IEEE International Conference on Robotics and Automation, IEEE, 2004, pp. 284–289.
- Diamond, S., and Boyd, S., “CVXPY: A Python-embedded modeling language for convex optimization,” The Journal of Machine Learning Research, Vol. 17, No. 1, 2016, pp. 2909–2913.
- Yu, Y., Elango, P., Açıkmeşe, B., and Topcu, U., “Extrapolated Proportional-Integral Projected Gradient Method for Conic Optimization,” IEEE Control Systems Letters, Vol. 7, 2023, pp. 73–78. 10.1109/LCSYS.2022.3186647.
- Kamath, A. G., Elango, P., Yu, Y., Mceowen, S., Chari, G. M., Carson III, J. M., and Açıkmeşe, Behçet., “Real-Time Sequential Conic Optimization for Multi-Phase Rocket Landing Guidance,” IFAC-PapersOnLine, Vol. 56, No. 2, 2023a, pp. 3118–3125. 10.1016/j.ifacol.2023.10.1444, 22nd IFAC World Congress.
- Elango, P., Kamath, A. G., Yu, Y., Carson III, J. M., Mesbahi, M., and Açıkmeşe, B., “A Customized First-Order Solver for Real-Time Powered-Descent Guidance,” AIAA SciTech 2022 Forum, 2022, p. 0951.
- Kamath, A. G., Elango, P., Kim, T., Mceowen, S., Yu, Y., Carson III, J. M., Mesbahi, M., and Açıkmeşe, B., “Customized real-time first-order methods for onboard dual quaternion-based 6-DoF powered-descent guidance,” AIAA SciTech 2023 Forum, 2023b, p. 2003.
- Szmuk, M., Reynolds, T. P., and Açıkmeşe, Behçet., “Successive Convexification for Real-Time Six-Degree-of-Freedom Powered Descent Guidance with State-Triggered Constraints,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020b, pp. 1399–1413. 10.2514/1.G004549.
- 10.1137/1.9780898718577.
- Sargent, R. W. H., and Sullivan, G. R., “The development of an efficient optimal control package,” Proceedings of the 8th IFIP Conference on Optimization Techniques, Würzburg, September 5–9, 1977, Vol. 7, Springer-Verlag, Berlin/Heidelberg, 1977, pp. 158–168. 10.1007/bfb0006520.
- Drusvyatskiy, D., and Lewis, A., “Error bounds, quadratic growth, and linear convergence of proximal methods,” Mathematics of Operations Research, Vol. 43, No. 3, 2018, pp. 919–948.
- “CUDA C Programming Guide,” https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html, 2023. Accessed: 2023-11-28.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.