Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adaptive atomic basis sets (2404.16942v1)

Published 25 Apr 2024 in physics.chem-ph

Abstract: Atomic basis sets are widely employed within quantum mechanics based simulations of matter. We introduce a machine learning model that adapts the basis set to the local chemical environment of each atom, prior to the start of self consistent field (SCF) calculations. In particular, as a proof of principle and because of their historic popularity, we have studied the Gaussian type orbitals from the Pople basis set, i.e. the STO-3G, 3-21G, 6-31G and 6-31G*. We adapt the basis by scaling the variance of the radial Gaussian functions leading to contraction or expansion of the atomic orbitals.A data set of optimal scaling factors for C, H, O, N and F were obtained by variational minimization of the Hartree-Fock (HF) energy of the smallest 2500 organic molecules from the QM9 database. Kernel ridge regression based ML prediction errors of the change in scaling decay rapidly with training set size, typically reaching less than 1 % for training set size 2000. Overall, we find systematically lower variance, and consequently the larger training efficiencies, when going from hydrogen to carbon to nitrogen to oxygen. Using the scaled basis functions obtained from the ML model, we conducted HF calculations for the subsequent 30'000 molecules in QM9. In comparison to the corresponding default Pople basis set results we observed improved energetics in up to 99 % of all cases. With respect to the larger basis set 6-311G(2df,2pd), atomization energy errors are lowered on average by ~31, 107, 11, and 11 kcal/mol for STO-3G, 3-21G, 6-31G and 6-31G*, respectively -- with negligible computational overhead. We illustrate the high transferability of adaptive basis sets for larger out-of-domain molecules relevant to addiction, diabetes, pain, aging.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. F. Jensen, WIREs Computational Molecular Science 3, 273 (2013), https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1123 .
  2. J. G. Hill, International Journal of Quantum Chemistry 113, 21–34 (2012).
  3. E. R. Davidson and D. Feller, Chemical Reviews 86, 681 (1986), https://doi.org/10.1021/cr00074a002 .
  4. J. Dunning, Thom H., The Journal of Chemical Physics 90, 1007 (1989), https://pubs.aip.org/aip/jcp/article-pdf/90/2/1007/15358102/1007_1_online.pdf .
  5. A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st ed. (Dover Publications, Inc., Mineola, 1996).
  6. D. Khan, A. J. A. Price, M. L. Ach,  and O. A. von Lilienfeld, “Adaptive hybrid density functionals,”  (2024a), arXiv:2402.14793 [physics.chem-ph] .
  7. J. Behler, The Journal of Chemical Physics 134, 074106 (2011), https://doi.org/10.1063/1.3553717 .
  8. D. C. Liu and J. Nocedal, Mathematical Programming 45, 503 (1989).
  9. V. Vapnik, The nature of statistical learning theory (Springer science & business media, 1999).
  10. C. E. Rasmussen et al., Gaussian processes for machine learning, Vol. 1 (Springer).
  11. B. Huang and O. A. von Lilienfeld, Nature Chemistry 12, 945 (2020).
  12. F. Neese, WIREs Computational Molecular Science 12, e1606 (2022).
  13. A. L. Hickey and C. N. Rowley, The Journal of Physical Chemistry A 118, 3678 (2014).
  14. D. Rappoport and F. Furche, The Journal of Chemical Physics 133, 134105 (2010), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3484283/15431477/134105_1_online.pdf .
  15. D. Khan, A. J. A. Price, M. L. Ach, O. Trottier,  and O. A. von Lilienfeld, “Adaptive hybrid density functionals,”  (2024b), arXiv:2402.14793 [physics.chem-ph] .

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com