Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems
Abstract: We theoretically investigate polarization-filtered two-photon correlations for the light emitted by a multichromophoric system undergoing excitation transport under realistic exciton-phonon interactions, and subject to continuous incoherent illumination. We show that for a biomolecular aggregate, such as the Fenna-Matthews Olson (FMO) photosynthetic complex, time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe both quantum coherent transport mechanisms and steady-state coherence properties, which are not witnessed by zero-delay correlations. A classical bound on correlation asymmetry is obtained, which FMO is shown to violate using exact numerical calculations. Our analysis indicates that the dominant contributions to time-asymmetry in such photon cross-correlations are population to coherence transfer for Frenkel-Exciton models. Our results therefore put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
- S. Huelga and M. Plenio, Contemporary Physics 54, 181 (2013).
- F. Fassioli and A. Olaya-Castro, New Journal of Physics 12, 085006 (2010).
- E. J. O’Reilly and A. Olaya-Castro, Nature Communications 5 (2014), 10.1038/ncomms4012.
- D. M. Wilkins and N. S. Dattani, Journal of Chemical Theory and Computation 11, 3411 (2015).
- Nature Reviews Methods Primers 3, 83 (2023).
- R. J. Glauber, Physical Review 130, 2529 (1963).
- H. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields.
- C. Sánchez Munõz and F. Schlawin, Physical Review Letters 124, 203601 (2020).
- R. Loudon, Reports on Progress in Physics 43, 913 (1980).
- Supplemental Material .
- S. Mukamel, Principles of Nonlinear Optics and Spectroscopy (New York: Oxford University Press, 1995).
- M. . Cho, Two-Dimensional Optical Spectroscopy (1st ed.) (CRC Press.).
- A. Ishizaki and Y. Tanimura, The Journal of Chemical Physics 125, 084501 (2006).
- A. Ishizaki and G. R. Fleming, The Journal of Chemical Physics 130, 234111 (2009).
- Y. Tanimura, The Journal of Chemical Physics 141, 044114 (2014).
- Y. Ke and Y. Zhao, The Journal of Chemical Physics 146, 214105 (2017).
- T. P. Fay and D. T. Limmer, The Journal of Chemical Physics 157, 174104 (2022).
- M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
- J. Adolphs and T. Renger, Biophysical Journal 91, 2778 (2006).
- T. P. Le and A. Olaya-Castro,  (2020), arXiv:2011.15016 .
- A. Ishizaki and Y. Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005).
- S. Nakajima, Progress of Theoretical Physics 20, 948 (1958).
- R. Zwanzig, The Journal of Chemical Physics 33, 1338 (1960).
- M. Tokuyama and H. Mori, Progress of Theoretical Physics 55, 411 (1976).
- H. P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Great Clarendon Street, 2002).
- C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed., edited by H. Haken (Springer, 2000).
- D. Brian and X. Sun, Chinese Journal of Chemical Physics 34, 497 (2021).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.