Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Rapid thermalization of dissipative many-body dynamics of commuting Hamiltonians (2404.16780v1)

Published 25 Apr 2024 in quant-ph, math-ph, and math.MP

Abstract: Quantum systems typically reach thermal equilibrium rather quickly when coupled to a thermal environment. The usual way of bounding the speed of this process is by estimating the spectral gap of the dissipative generator. However the gap, by itself, does not always yield a reasonable estimate for the thermalization time in many-body systems: without further structure, a uniform lower bound on it only constrains the thermalization time to grow polynomially with system size. Here, instead, we show that for a large class of geometrically-2-local models of Davies generators with commuting Hamiltonians, the thermalization time is much shorter than one would na\"ively estimate from the gap: at most logarithmic in the system size. This yields the so-called rapid mixing of dissipative dynamics. The result is particularly relevant for 1D systems, for which we prove rapid thermalization with a system size independent decay rate only from a positive gap in the generator. We also prove that systems in hypercubic lattices of any dimension, and exponential graphs, such as trees, have rapid mixing at high enough temperatures. We do this by introducing a novel notion of clustering which we call "strong local indistinguishability" based on a max-relative entropy, and then proving that it implies a lower bound on the modified logarithmic Sobolev inequality (MLSI) for nearest neighbour commuting models. This has consequences for the rate of thermalization towards Gibbs states, and also for their relevant Wasserstein distances and transportation cost inequalities. Along the way, we show that several measures of decay of correlations on Gibbs states of commuting Hamiltonians are equivalent, a result of independent interest. At the technical level, we also show a direct relation between properties of Davies and Schmidt dynamics, that allows to transfer results of thermalization between both.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com