Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Frozen stars: Black hole mimickers sourced by a string fluid (2404.15985v1)

Published 24 Apr 2024 in hep-th and gr-qc

Abstract: The frozen star is a non-singular, ultracompact object that, to an external observer, looks exactly like a Schwarzschild black hole, but with a different interior geometry and matter composition. The frozen star needs to be sourced by an extremely anisotropic fluid, for which the sum of the radial pressure and energy density is either vanishing or perturbatively small. Here, we show that this matter can be identified with the string fluid resulting from the decay of an unstable $D$-brane or a brane-antibrane system at the end of open-string tachyon condensation. The string fluid corresponds to flux tubes emanating from the center and ending at the Schwarzschild radius of the star. The effective Lagrangian for this fluid can be recast into a Born-Infeld form. When the fluid Lagrangian is coupled to that of Einstein's Gravity, the static, spherically symmetric solutions of the equations of motion are shown to be the same as those describing the frozen star model. Frozen stars can therefore be viewed as gravitationally back-reacted BIons. The Born-Infeld Lagrangian provides a complete set of equations that describe the dynamics of the frozen star in a generic state, which is not necessarily static nor spherically symmetric. Additionally, this description provides a new physical perspective on the structure of the frozen star in terms of the corresponding electric fields and charges. The electric field is sourced by a point-like charge at the center of the star, while its outer layer is equal and oppositely charged. The electric force between the charges is offset because the mass of the star is fixed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. Brustein and A. J. M. Medved, “Resisting collapse: How matter inside a black hole can withstand gravity,” Phys. Rev. D 99, no.6, 064019 (2019) [arXiv:1805.11667 [hep-th]].
  2. R. Brustein and A. J. M. Medved, “Non-Singular Black Holes Interiors Need Physics Beyond the Standard Model,” Fortsch. Phys. 67, no.10, 1900058 (2019) [arXiv:1902.07990 [hep-th]].
  3. R. Brustein, A. J. M. Medved and T. Simhon, “Black holes as frozen stars,” Phys. Rev. D 105, no.2, 024019 (2022) [arXiv:2109.10017 [gr-qc]].
  4. R. Brustein, A. J. M. Medved, T. Shindelman and T. Simhon, “Black Holes as Frozen Stars: Regular Interior Geometry,” Fortsch. Phys. 72, no.1, 2300188 (2024) [arXiv:2301.09712 [gr-qc]].
  5. R. Brustein, A. J. M. Medved and T. Shindelman, “Defrosting frozen stars: spectrum of internal fluid modes,” Phys. Rev. D 108, no.4, 044058 (2023) [arXiv:2304.04984 [gr-qc]].
  6. R. Brustein, A. J. M. Medved and T. Simhon, “Thermodynamics of frozen stars,” [arXiv:2310.11572 [gr-qc]].
  7. R. Brustein and A. J. M. Medved, “Sourcing the Kerr geometry,” [arXiv:2310.16467 [gr-qc]].
  8. R. Brustein and A. J. M. Medved, “Black holes as collapsed polymers,” Fortsch. Phys.  65, no. 1, 1600114 (2017) [arXiv:1602.07706 [hep-th]].
  9. R. Brustein and A. J. M. Medved,“Emergent horizon, Hawking radia- tion and chaos in the collapsed polymer model of a black hole,” Fortsch. Phys. 65, 0116 (2017) [arXiv:1607.03721 [hep-th]].
  10. A. Sen, “Tachyon condensation on the brane anti-brane system,” JHEP 08, 012 (1998) [arXiv:hep-th/9805170 [hep-th]].
  11. A. Sen, “BPS D-branes on nonsupersymmetric cycles,” JHEP 12, 021 (1998) [arXiv:hep-th/9812031 [hep-th]].
  12. A. Sen, “NonBPS states and Branes in string theory,” [arXiv:hep-th/9904207 [hep-th]].
  13. A. Sen, “Supersymmetric world volume action for nonBPS D-branes,” JHEP 10, 008 (1999) [arXiv:hep-th/9909062 [hep-th]].
  14. A. Sen, “Universality of the tachyon potential,” JHEP 12, 027 (1999) [arXiv:hep-th/9911116 [hep-th]].
  15. G. W. Gibbons, K. Hori and P. Yi, “String fluid from unstable D-branes,” Nucl. Phys. B 596, 136 (2001) [arXiv:hep-th/0009061 [hep-th]].
  16. H. U. Yee and P. Yi, “Open / closed duality, unstable D-branes, and coarse grained closed strings,” Nucl. Phys. B 686, 31 (2004) [arXiv:hep-th/0402027 [hep-th]].
  17. A. Sen, “Tachyon dynamics in open string theory,” Int. J. Mod. Phys. A 20, 5513 (2005) [arXiv:hep-th/0410103 [hep-th]].
  18. H. B. Nielsen and P. Olesen, “Local field theory of the dual string,” Nucl. Phys. B 57, 367 (1973).
  19. P. S. Letelier, “Clouds Of Strings In General Relativity,” Phys. Rev. D 20 1294 (1979).
  20. J. Stachel, “Thickening The String. I. The String Perfect Dust,” Phys. Rev. D 21, 2171 (1990).
  21. E. I. Guendelman and A. Rabinowitz, “The Gravitational field of a hedgehog and the evolution of vacuum bubbles,” Phys. Rev. D 44, 3152 (1991).
  22. E. I. Guendelman and A. I. Rabinowitz, “Hedgehog compactification,” Phys. Rev. D 47, 3474 (1993) [erratum: Phys. Rev. D 48, 2961 (1993)].
  23. G. W. Gibbons, “Born-Infeld particles and Dirichlet p-branes,” Nucl. Phys. B 514, 603 (1998) [arXiv:hep-th/9709027 [hep-th]].
  24. G. W. Gibbons, “Aspects of Born-Infeld theory and string / M theory,” AIP Conf. Proc. 589, no.1, 324 (2001) [arXiv:hep-th/0106059 [hep-th]].
  25. R. Brustein and A. J. M. Medved, “Quantum hair of black holes out of equilibrium,” Phys. Rev. D 97, no.4, 044035 (2018) [arXiv:1709.03566 [hep-th]].
  26. R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, “Constraints on thermalizing surfaces from infrared observations of supermassive black holes,” [arXiv:2306.17480 [astro-ph.HE]].
  27. R. Penrose, “Gravitational Collapse and Space-Time Singularities,” Phys. Rev. Lett. 14, 57 (1965).
  28. S. W. Hawking and R. Penrose, “The singularities of gravitational collapse and cosmology,” Proc. R. Soc. Lond. A 314, 529 (1970).
  29. H. Buchdahl, “General Relativistic Fluid Spheres,” Phys. Rev. 116, 1027 (1959).
  30. S. Chandrasekhar “Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity,” Phys. Rev. Lett. 12, 114 (1964).
  31. S. Chandrasekhar, “The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity,” Astrophys. J. 140, 417 (1964).
  32. H. Bondi, “Massive spheres in general relativity,” Proc. Roy. Soc. Lond. A 282, 303 (1964).
  33. P. O. Mazur and E. Mottola, “Surface tension and negative pressure interior of a non-singular ,” Class. Quant. Grav.  32, no. 21, 215024 (2015) [arXiv:1501.03806 [gr-qc]].
  34. V. P. Frolov and A. Zelnikov, “Quantum radiation from an evaporating nonsingular black hole,” Phys. Rev. D 95, no. 12, 124028 (2017) [arXiv:1704.03043 [hep-th]].
  35. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio and M. Visser, “On the viability of regular black holes,” JHEP 1807, 023 (2018) [arXiv:1805.02675 [gr-qc]].
  36. A. A. Tseytlin, “Selfduality of Born-Infeld action and Dirichlet three-brane of type IIB superstring theory,” Nucl. Phys. B 469, 51 (1996) [arXiv:hep-th/9602064 [hep-th]].
  37. J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).
  38. A. Ashtekar and B. Krishnan, “Isolated and dynamical horizons and their applications,” Living Rev. Rel. 7, 10 (2004) [arXiv:gr-qc/0407042 [gr-qc]].
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com