Towards efficient Effective One Body models for generic, non-planar orbits (2404.15408v2)
Abstract: Complete waveform models able to account for arbitrary non-planar orbits represent a holy grail in current gravitational-wave astronomy. Here, we take a step towards this direction and present a simple yet efficient prescription to obtain the evolution of the spin vectors and of the orbital angular momentum along non-circularized orbits, that can be applied to any eccentric aligned-spins waveform model. The scheme employed is motivated by insights gained from the post-Newtonian (PN) regime. We investigate the phenomenology of the Euler angles characterizing the time-dependent rotation that connects the co-precessing frame to the inertial one, gauging the importance of non-circular terms in the evolution of the spins of a precessing binary. We demonstrate that such terms are largely negligible, irrespectively of the details of the orbit. Such insights are confirmed by studying the radiation-frame of a few eccentric, precessing numerical relativity (NR) simulations. Our investigations confirm that the usual "twisting" technique employed for quasi-spherical systems can be safely applied to non-circularized binaries. By then augmenting a state-of-the-art Effective-One-Body (EOB) model for non-circular planar orbits with the prescription discussed, we obtain an inspiral-merger-ringdown (IMR) model for eccentric, precessing binary black holes (BBHs). We validate the model in the quasi-spherical limit via mismatches and present one phasing comparison against a precessing, eccentric simulation from the RIT catalog.
- B. P. Abbott et al. (LIGO Scientific, VINROUGE, Las Cumbres Observatory, DLT40, Virgo, 1M2H, MASTER), “A gravitational-wave standard siren measurement of the Hubble constant,” Nature (2017a), 10.1038/nature24471, arXiv:1710.05835 [astro-ph.CO] .
- Benjamin P. Abbott et al. (Virgo, LIGO Scientific), ‘‘GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119, 161101 (2017b), arXiv:1710.05832 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Measurements of neutron star radii and equation of state,” Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc] .
- Eemeli Annala, Tyler Gorda, Aleksi Kurkela, and Aleksi Vuorinen, “Gravitational-wave constraints on the neutron-star-matter Equation of State,” Phys. Rev. Lett. 120, 172703 (2018), arXiv:1711.02644 [astro-ph.HE] .
- David Radice, Albino Perego, Kenta Hotokezaka, Steven A. Fromm, Sebastiano Bernuzzi, and Luke F. Roberts, “Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts and Nucleosynthesis,” Astrophys. J. 869, 130 (2018), arXiv:1809.11161 [astro-ph.HE] .
- Soumi De, Daniel Finstad, James M. Lattimer, Duncan A. Brown, Edo Berger, and Christopher M. Biwer, “Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817,” Phys. Rev. Lett. 121, 091102 (2018), [Erratum: Phys. Rev. Lett.121,no.25,259902(2018)], arXiv:1804.08583 [astro-ph.HE] .
- F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, “Neutron skins and neutron stars in the multi-messenger era,” Phys. Rev. Lett. 120, 172702 (2018), arXiv:1711.06615 [nucl-th] .
- Elias R. Most, Lukas R. Weih, Luciano Rezzolla, and Jürgen Schaffner-Bielich, “New constraints on radii and tidal deformabilities of neutron stars from GW170817,” Phys. Rev. Lett. 120, 261103 (2018), arXiv:1803.00549 [gr-qc] .
- Carolyn Raithel, Feryal Özel, and Dimitrios Psaltis, “Tidal deformability from GW170817 as a direct probe of the neutron star radius,” Astrophys. J. Lett. 857, L23 (2018), arXiv:1803.07687 [astro-ph.HE] .
- I. Tews, J. Margueron, and S. Reddy, “Critical examination of constraints on the equation of state of dense matter obtained from GW170817,” Phys. Rev. C98, 045804 (2018), arXiv:1804.02783 [nucl-th] .
- J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and B. S. Sathyaprakash, “Testing the no-hair theorem with black hole ringdowns using TIGER,” Phys. Rev. D90, 064009 (2014), arXiv:1406.3201 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of general relativity with GW150914,” Phys. Rev. Lett. 116, 221101 (2016), [Erratum: Phys. Rev. Lett.121,no.12,129902(2018)], arXiv:1602.03841 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Tests of General Relativity with GW170817,” Phys. Rev. Lett. 123, 011102 (2019), arXiv:1811.00364 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), “GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses,” Phys. Rev. D 102, 043015 (2020a), arXiv:2004.08342 [astro-ph.HE] .
- R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run,” Phys. Rev. X 13, 041039 (2023), arXiv:2111.03606 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), “GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙direct-product\odot⊙,” Phys. Rev. Lett. 125, 101102 (2020b), arXiv:2009.01075 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), “Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521,” Astrophys. J. Lett. 900, L13 (2020c), arXiv:2009.01190 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT), “Multi-messenger Observations of a Binary Neutron Star Merger,” Astrophys. J. Lett. 848, L12 (2017c), arXiv:1710.05833 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙similar-toabsent3.4subscript𝑀direct-product\sim 3.4M_{\odot}∼ 3.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT,” Astrophys. J. Lett. 892, L3 (2020d), arXiv:2001.01761 [astro-ph.HE] .
- V. Gayathri, J. Healy, J. Lange, B. O’Brien, M. Szczepanczyk, Imre Bartos, M. Campanelli, S. Klimenko, C. O. Lousto, and R. O’Shaughnessy, “Eccentricity estimate for black hole mergers with numerical relativity simulations,” Nature Astron. 6, 344–349 (2022), arXiv:2009.05461 [astro-ph.HE] .
- Isobel M. Romero-Shaw, Paul D. Lasky, Eric Thrane, and Juan Calderon Bustillo, “GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal,” Astrophys. J. Lett. 903, L5 (2020), arXiv:2009.04771 [astro-ph.HE] .
- Juan Calderón Bustillo, Nicolas Sanchis-Gual, Alejandro Torres-Forné, and José A. Font, “Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers,” Phys. Rev. Lett. 126, 201101 (2021), arXiv:2009.01066 [gr-qc] .
- Masaru Shibata, Kenta Kiuchi, Sho Fujibayashi, and Yuichiro Sekiguchi, “Alternative possibility of GW190521: Gravitational waves from high-mass black hole-disk systems,” Phys. Rev. D 103, 063037 (2021), arXiv:2101.05440 [astro-ph.HE] .
- Alexander H. Nitz and Collin D. Capano, “GW190521 may be an intermediate mass ratio inspiral,” Astrophys. J. Lett. 907, L9 (2021), arXiv:2010.12558 [astro-ph.HE] .
- Isobel M. Romero-Shaw, Davide Gerosa, and Nicholas Loutrel, “Eccentricity or spin precession? Distinguishing subdominant effects in gravitational-wave data,” Mon. Not. Roy. Astron. Soc. 519, 5352–5357 (2023), arXiv:2211.07528 [astro-ph.HE] .
- Koustav Chandra, Archana Pai, Samson H. W. Leong, and Juan Calderón Bustillo, “Impact of Bayesian Priors on the Inferred Masses of Quasi-Circular Intermediate-Mass Black Hole Binaries,” (2023), arXiv:2309.01683 [gr-qc] .
- Theocharis A. Apostolatos, Curt Cutler, Gerald J. Sussman, and Kip S. Thorne, “Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries,” Phys. Rev. D49, 6274–6297 (1994).
- Alessandra Buonanno, Yan-bei Chen, and Michele Vallisneri, “Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit,” Phys. Rev. D67, 104025 (2003), [Erratum: Phys. Rev.D74,029904(2006)], arXiv:gr-qc/0211087 [gr-qc] .
- Patricia Schmidt, Mark Hannam, Sascha Husa, and P. Ajith, “Tracking the precession of compact binaries from their gravitational-wave signal,” Phys. Rev. D84, 024046 (2011), arXiv:1012.2879 [gr-qc] .
- Patricia Schmidt, Mark Hannam, and Sascha Husa, “Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and non-precessing inspiral signals,” Phys. Rev. D86, 104063 (2012), arXiv:1207.3088 [gr-qc] .
- Michael Boyle, Robert Owen, and Harald P. Pfeiffer, “A geometric approach to the precession of compact binaries,” Phys. Rev. D84, 124011 (2011), arXiv:1110.2965 [gr-qc] .
- R. O’Shaughnessy, B. Vaishnav, J. Healy, Z. Meeks, and D. Shoemaker, “Efficient asymptotic frame selection for binary black hole spacetimes using asymptotic radiation,” Phys. Rev. D84, 124002 (2011), arXiv:1109.5224 [gr-qc] .
- Yi Pan, Alessandra Buonanno, Andrea Taracchini, Lawrence E. Kidder, Abdul H. Mroue, et al., “Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism,” Phys.Rev. D89, 084006 (2014), arXiv:1307.6232 [gr-qc] .
- Jonathan E. Thompson, Eleanor Hamilton, Lionel London, Shrobana Ghosh, Panagiota Kolitsidou, Charlie Hoy, and Mark Hannam, “Phenomenological gravitational-wave model for precessing black-hole binaries with higher multipoles and asymmetries,” Phys. Rev. D 109, 063012 (2024), arXiv:2312.10025 [gr-qc] .
- Shrobana Ghosh, Panagiota Kolitsidou, and Mark Hannam, “First frequency-domain phenomenological model of the multipole asymmetry in gravitational-wave signals from binary-black-hole coalescence,” Phys. Rev. D 109, 024061 (2024), arXiv:2310.16980 [gr-qc] .
- Eleanor Hamilton, Lionel London, and Mark Hannam, “Ringdown frequencies in black holes formed from precessing black-hole binaries,” Phys. Rev. D 107, 104035 (2023), arXiv:2301.06558 [gr-qc] .
- Lionel London, Sebastian Khan, Edward Fauchon-Jones, Xisco Jiménez Forteza, Mark Hannam, Sascha Husa, Chinmay Kalaghatgi, Frank Ohme, and Francesco Pannarale, “First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries,” Phys. Rev. Lett. 120, 161102 (2018), arXiv:1708.00404 [gr-qc] .
- Cecilio García-Quirós, Marta Colleoni, Sascha Husa, Héctor Estellés, Geraint Pratten, Antoni Ramos-Buades, Maite Mateu-Lucena, and Rafel Jaume, “Multimode frequency-domain model for the gravitational wave signal from nonprecessing black-hole binaries,” Phys. Rev. D 102, 064002 (2020), arXiv:2001.10914 [gr-qc] .
- Sebastian Khan, Frank Ohme, Katerina Chatziioannou, and Mark Hannam, “Including higher order multipoles in gravitational-wave models for precessing binary black holes,” Phys. Rev. D 101, 024056 (2020), arXiv:1911.06050 [gr-qc] .
- Mark Hannam, Patricia Schmidt, Alejandro Bohé, Leïla Haegel, Sascha Husa, Frank Ohme, Geraint Pratten, and Michael Pürrer, “Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms,” Phys. Rev. Lett. 113, 151101 (2014), arXiv:1308.3271 [gr-qc] .
- Patricia Schmidt, Frank Ohme, and Mark Hannam, “Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter,” Phys. Rev. D91, 024043 (2015), arXiv:1408.1810 [gr-qc] .
- Sebastian Khan, Katerina Chatziioannou, Mark Hannam, and Frank Ohme, “Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects,” Phys. Rev. D100, 024059 (2019), arXiv:1809.10113 [gr-qc] .
- Geraint Pratten et al., “Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes,” Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
- Serguei Ossokine et al., “Multipolar Effective-One-Body Waveforms for Precessing Binary Black Holes: Construction and Validation,” Phys. Rev. D 102, 044055 (2020), arXiv:2004.09442 [gr-qc] .
- Sarp Akcay, Rossella Gamba, and Sebastiano Bernuzzi, “A hybrid post-Newtonian – effective-one-body scheme for spin-precessing compact-binary waveforms,” Phys. Rev. D 103, 024014 (2021), arXiv:2005.05338 [gr-qc] .
- Antoni Ramos-Buades, Alessandra Buonanno, Héctor Estellés, Mohammed Khalil, Deyan P. Mihaylov, Serguei Ossokine, Lorenzo Pompili, and Mahlet Shiferaw, “Next generation of accurate and efficient multipolar precessing-spin effective-one-body waveforms for binary black holes,” Phys. Rev. D 108, 124037 (2023), arXiv:2303.18046 [gr-qc] .
- A. Buonanno and T. Damour, “Effective one-body approach to general relativistic two-body dynamics,” Phys. Rev. D59, 084006 (1999), arXiv:gr-qc/9811091 .
- Alessandra Buonanno and Thibault Damour, “Transition from inspiral to plunge in binary black hole coalescences,” Phys. Rev. D62, 064015 (2000), arXiv:gr-qc/0001013 .
- Thibault Damour, Piotr Jaranowski, and Gerhard Schaefer, “On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation,” Phys. Rev. D62, 084011 (2000), arXiv:gr-qc/0005034 [gr-qc] .
- Thibault Damour, “Coalescence of two spinning black holes: An effective one- body approach,” Phys. Rev. D64, 124013 (2001), arXiv:gr-qc/0103018 .
- Thibault Damour, Piotr Jaranowski, and Gerhard Schäfer, “Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling,” Phys.Rev. D78, 024009 (2008), arXiv:0803.0915 [gr-qc] .
- Alessandro Nagar, “Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling,” Phys.Rev. D84, 084028 (2011), arXiv:1106.4349 [gr-qc] .
- Thibault Damour, Piotr Jaranowski, and Gerhard Schäfer, “Fourth post-Newtonian effective one-body dynamics,” Phys. Rev. D 91, 084024 (2015), arXiv:1502.07245 [gr-qc] .
- Ian Hinder, Lawrence E. Kidder, and Harald P. Pfeiffer, “An eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory,” (2017), arXiv:1709.02007 [gr-qc] .
- Tousif Islam, “Study of eccentric binary black hole mergers using numerical relativity and an inspiral-merger-ringdown model,” (2024), arXiv:2403.03487 [gr-qc] .
- Tousif Islam, Vijay Varma, Jackie Lodman, Scott E. Field, Gaurav Khanna, Mark A. Scheel, Harald P. Pfeiffer, Davide Gerosa, and Lawrence E. Kidder, “Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case,” Phys. Rev. D 103, 064022 (2021), arXiv:2101.11798 [gr-qc] .
- Thibault Damour, Federico Guercilena, Ian Hinder, Seth Hopper, Alessandro Nagar, and Luciano Rezzolla, “Strong-Field Scattering of Two Black Holes: Numerics Versus Analytics,” Phys. Rev. D 89, 081503 (2014), arXiv:1402.7307 [gr-qc] .
- Tanja Hinderer and Stanislav Babak, “Foundations of an effective-one-body model for coalescing binaries on eccentric orbits,” Phys. Rev. D96, 104048 (2017), arXiv:1707.08426 [gr-qc] .
- Zhoujian Cao and Wen-Biao Han, “Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism,” Phys. Rev. D96, 044028 (2017), arXiv:1708.00166 [gr-qc] .
- Xiaolin Liu, Zhoujian Cao, and Zong-Hong Zhu, “A higher-multipole gravitational waveform model for an eccentric binary black holes based on the effective-one-body-numerical-relativity formalism,” (2021), arXiv:2102.08614 [gr-qc] .
- Xiaolin Liu, Zhoujian Cao, and Lijing Shao, “Upgraded waveform model of eccentric binary black hole based on effective-one-body-numerical-relativity for spin-aligned binary black holes,” Int. J. Mod. Phys. D 32, 2350015 (2023a), arXiv:2306.15277 [gr-qc] .
- Danilo Chiaramello and Alessandro Nagar, “Faithful analytical effective-one-body waveform model for spin-aligned, moderately eccentric, coalescing black hole binaries,” Phys. Rev. D 101, 101501 (2020), arXiv:2001.11736 [gr-qc] .
- Alessandro Nagar, Alice Bonino, and Piero Rettegno, “Effective one-body multipolar waveform model for spin-aligned, quasicircular, eccentric, hyperbolic black hole binaries,” Phys. Rev. D 103, 104021 (2021), arXiv:2101.08624 [gr-qc] .
- Alessandro Nagar and Piero Rettegno, “Next generation: Impact of high-order analytical information on effective one body waveform models for noncircularized, spin-aligned black hole binaries,” Phys. Rev. D 104, 104004 (2021), arXiv:2108.02043 [gr-qc] .
- Alessandro Nagar, Piero Rettegno, Rossella Gamba, Simone Albanesi, Angelica Albertini, and Sebastiano Bernuzzi, “Analytic systematics in next generation of effective-one-body gravitational waveform models for future observations,” Phys. Rev. D 108, 124018 (2023), arXiv:2304.09662 [gr-qc] .
- Antoni Ramos-Buades, Alessandra Buonanno, Mohammed Khalil, and Serguei Ossokine, “Effective-one-body multipolar waveforms for eccentric binary black holes with nonprecessing spins,” Phys. Rev. D 105, 044035 (2022), arXiv:2112.06952 [gr-qc] .
- Mohammed Khalil, Alessandra Buonanno, Jan Steinhoff, and Justin Vines, “Radiation-reaction force and multipolar waveforms for eccentric, spin-aligned binaries in the effective-one-body formalism,” Phys. Rev. D 104, 024046 (2021), arXiv:2104.11705 [gr-qc] .
- Andrea Placidi, Simone Albanesi, Alessandro Nagar, Marta Orselli, Sebastiano Bernuzzi, and Gianluca Grignani, “Exploiting Newton-factorized, 2PN-accurate waveform multipoles in effective-one-body models for spin-aligned noncircularized binaries,” Phys. Rev. D 105, 104030 (2022), arXiv:2112.05448 [gr-qc] .
- Simone Albanesi, Alessandro Nagar, Sebastiano Bernuzzi, Andrea Placidi, and Marta Orselli, “Assessment of effective-one-body radiation reactions for generic planar orbits,” Phys. Rev. D 105, 104031 (2022), arXiv:2202.10063 [gr-qc] .
- Antoine Klein, Yannick Boetzel, Achamveedu Gopakumar, Philippe Jetzer, and Lorenzo de Vittori, “Fourier domain gravitational waveforms for precessing eccentric binaries,” Phys. Rev. D98, 104043 (2018), arXiv:1801.08542 [gr-qc] .
- Khun Sang Phukon, Anuradha Gupta, Sukanta Bose, and Pankaj Jain, “Effect of orbital eccentricity on the dynamics of precessing compact binaries,” Phys. Rev. D 100, 124008 (2019), arXiv:1904.03985 [gr-qc] .
- Antoine Klein, “EFPE: Efficient fully precessing eccentric gravitational waveforms for binaries with long inspirals,” (2021), arXiv:2106.10291 [gr-qc] .
- Brennan Ireland, Ofek Birnholtz, Hiroyuki Nakano, Eric West, and Manuela Campanelli, “Eccentric Binary Black Holes with Spin via the Direct Integration of the Post-Newtonian Equations of Motion,” Phys. Rev. D 100, 024015 (2019), arXiv:1904.03443 [gr-qc] .
- Giulia Fumagalli and Davide Gerosa, “Spin-eccentricity interplay in merging binary black holes,” Phys. Rev. D 108, 124055 (2023), arXiv:2310.16893 [gr-qc] .
- J. Nijaid Arredondo, Antoine Klein, and Nicolás Yunes, “Efficient Gravitational-Wave Model for Fully-Precessing and Moderately-Eccentric, Compact Binary Inspirals,” (2024), arXiv:2402.06804 [gr-qc] .
- Xiaolin Liu, Zhoujian Cao, and Zong-Hong Zhu, “Effective-One-Body Numerical-Relativity waveform model for Eccentric spin-precessing binary black hole coalescence,” (2023b), arXiv:2310.04552 [gr-qc] .
- Alejandro Bohé et al., “Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors,” Phys. Rev. D95, 044028 (2017), arXiv:1611.03703 [gr-qc] .
- Roberto Cotesta, Alessandra Buonanno, Alejandro Bohé, Andrea Taracchini, Ian Hinder, and Serguei Ossokine, “Enriching the Symphony of Gravitational Waves from Binary Black Holes by Tuning Higher Harmonics,” Phys. Rev. D98, 084028 (2018), arXiv:1803.10701 [gr-qc] .
- James Healy and Carlos O. Lousto, “Fourth RIT binary black hole simulations catalog: Extension to eccentric orbits,” Phys. Rev. D 105, 124010 (2022), arXiv:2202.00018 [gr-qc] .
- Rossella Gamba, Sarp Akçay, Sebastiano Bernuzzi, and Jake Williams, “Effective-one-body waveforms for precessing coalescing compact binaries with post-Newtonian twist,” Phys. Rev. D 106, 024020 (2022), arXiv:2111.03675 [gr-qc] .
- Alejandro Bohe, Sylvain Marsat, Guillaume Faye, and Luc Blanchet, “Next-to-next-to-leading order spin-orbit effects in the near-zone metric and precession equations of compact binaries,” Class. Quant. Grav. 30, 075017 (2013), arXiv:1212.5520 [gr-qc] .
- Luc Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries,” Living Rev. Relativity 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
- Nick Tacik et al., “Binary Neutron Stars with Arbitrary Spins in Numerical Relativity,” Phys. Rev. D92, 124012 (2015), [Erratum: Phys. Rev.D94,no.4,049903(2016)], arXiv:1508.06986 [gr-qc] .
- Wolfgang Tichy, Alireza Rashti, Tim Dietrich, Reetika Dudi, and Bernd Brügmann, “Constructing Binary Neutron Star Initial Data with High Spins, High Compactness, and High Mass-Ratios,” Phys. Rev. D100, 124046 (2019), arXiv:1910.09690 [gr-qc] .
- Etienne Racine, “Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction,” Phys. Rev. D78, 044021 (2008), arXiv:0803.1820 [gr-qc] .
- Lucy M. Thomas, Patricia Schmidt, and Geraint Pratten, “New effective precession spin for modeling multimodal gravitational waveforms in the strong-field regime,” Phys. Rev. D 103, 083022 (2021), arXiv:2012.02209 [gr-qc] .
- Seth Hopper, Alessandro Nagar, and Piero Rettegno, “Strong-field scattering of two spinning black holes: Numerics versus analytics,” Phys. Rev. D 107, 124034 (2023), arXiv:2204.10299 [gr-qc] .
- Thibault Damour and Piero Rettegno, “Strong-field scattering of two black holes: Numerical relativity meets post-Minkowskian gravity,” Phys. Rev. D 107, 064051 (2023), arXiv:2211.01399 [gr-qc] .
- Piero Rettegno, Geraint Pratten, Lucy M. Thomas, Patricia Schmidt, and Thibault Damour, “Strong-field scattering of two spinning black holes: Numerical relativity versus post-Minkowskian gravity,” Phys. Rev. D 108, 124016 (2023), arXiv:2307.06999 [gr-qc] .
- Zvi Bern, Clifford Cheung, Radu Roiban, Chia-Hsien Shen, Mikhail P. Solon, and Mao Zeng, “Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,” Phys. Rev. Lett. 122, 201603 (2019), arXiv:1901.04424 [hep-th] .
- Gregor Kälin, Zhengwen Liu, and Rafael A. Porto, “Conservative Dynamics of Binary Systems to Third Post-Minkowskian Order from the Effective Field Theory Approach,” Phys. Rev. Lett. 125, 261103 (2020), arXiv:2007.04977 [hep-th] .
- N. Emil J. Bjerrum-Bohr, Poul H. Damgaard, Ludovic Planté, and Pierre Vanhove, “The amplitude for classical gravitational scattering at third Post-Minkowskian order,” JHEP 08, 172 (2021), arXiv:2105.05218 [hep-th] .
- Zvi Bern, Julio Parra-Martinez, Radu Roiban, Michael S. Ruf, Chia-Hsien Shen, Mikhail P. Solon, and Mao Zeng, “Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at O(G4),” Phys. Rev. Lett. 128, 161103 (2022), arXiv:2112.10750 [hep-th] .
- Christoph Dlapa, Gregor Kälin, Zhengwen Liu, and Rafael A. Porto, “Conservative Dynamics of Binary Systems at Fourth Post-Minkowskian Order in the Large-Eccentricity Expansion,” Phys. Rev. Lett. 128, 161104 (2022), arXiv:2112.11296 [hep-th] .
- Thibault Damour, “Radiative contribution to classical gravitational scattering at the third order in G𝐺Gitalic_G,” Phys. Rev. D 102, 124008 (2020), arXiv:2010.01641 [gr-qc] .
- Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo, and Gabriele Veneziano, “Radiation Reaction from Soft Theorems,” Phys. Lett. B 818, 136379 (2021a), arXiv:2101.05772 [hep-th] .
- Gihyuk Cho, Gregor Kälin, and Rafael A. Porto, “From boundary data to bound states. Part III. Radiative effects,” JHEP 04, 154 (2022), [Erratum: JHEP 07, 002 (2022)], arXiv:2112.03976 [hep-th] .
- Paolo Di Vecchia, Carlo Heissenberg, Rodolfo Russo, and Gabriele Veneziano, “The eikonal approach to gravitational scattering and radiation at 𝒪𝒪\mathcal{O}caligraphic_O(G33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT),” JHEP 07, 169 (2021b), arXiv:2104.03256 [hep-th] .
- Enrico Herrmann, Julio Parra-Martinez, Michael S. Ruf, and Mao Zeng, “Radiative classical gravitational observables at 𝒪𝒪\mathcal{O}caligraphic_O(G33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT) from scattering amplitudes,” JHEP 10, 148 (2021), arXiv:2104.03957 [hep-th] .
- Donato Bini, Thibault Damour, and Andrea Geralico, “Radiative contributions to gravitational scattering,” Phys. Rev. D 104, 084031 (2021), arXiv:2107.08896 [gr-qc] .
- Donato Bini and Andrea Geralico, ‘‘Higher-order tail contributions to the energy and angular momentum fluxes in a two-body scattering process,” Phys. Rev. D 104, 104020 (2021), arXiv:2108.05445 [gr-qc] .
- Aneesh V. Manohar, Alexander K. Ridgway, and Chia-Hsien Shen, “Radiated Angular Momentum and Dissipative Effects in Classical Scattering,” Phys. Rev. Lett. 129, 121601 (2022), arXiv:2203.04283 [hep-th] .
- Christoph Dlapa, Gregor Kälin, Zhengwen Liu, Jakob Neef, and Rafael A. Porto, “Radiation Reaction and Gravitational Waves at Fourth Post-Minkowskian Order,” Phys. Rev. Lett. 130, 101401 (2023), arXiv:2210.05541 [hep-th] .
- Deborah Ferguson et al., “Second MAYA Catalog of Binary Black Hole Numerical Relativity Waveforms,” (2023a), arXiv:2309.00262 [gr-qc] .
- Deborah Ferguson et al., “Mayawaves: Python Library for Interacting with the Einstein Toolkit and the MAYA Catalog,” (2023b), arXiv:2309.00653 [astro-ph.IM] .
- Gregorio Carullo, Simone Albanesi, Alessandro Nagar, Rossella Gamba, Sebastiano Bernuzzi, Tomas Andrade, and Juan Trenado, “Unveiling the Merger Structure of Black Hole Binaries in Generic Planar Orbits,” Phys. Rev. Lett. 132, 101401 (2024), arXiv:2309.07228 [gr-qc] .
- L. Pekowsky, R. O’Shaughnessy, J. Healy, and D. Shoemaker, “Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame,” Phys. Rev. D 88, 024040 (2013), arXiv:1304.3176 [gr-qc] .
- Evan Ochsner and Richard O’Shaughnessy, “Asymptotic frame selection for binary black hole spacetimes II: Post-Newtonian limit,” Phys. Rev. D 86, 104037 (2012), arXiv:1205.2287 [gr-qc] .
- Alessandro Nagar, Rossella Gamba, Piero Rettegno, Veronica Fantini, and Sebastiano Bernuzzi, “Effective-one-body waveform model for non-circularized, planar, coalescing black hole binaries: the importance of radiation reaction,” (2024), arXiv:2404.05288 [gr-qc] .
- Donato Bini, Thibault Damour, and Andrea Geralico, “Novel approach to binary dynamics: application to the fifth post-Newtonian level,” Phys. Rev. Lett. 123, 231104 (2019), arXiv:1909.02375 [gr-qc] .
- Thibault Damour and Alessandro Nagar, “New effective-one-body description of coalescing nonprecessing spinning black-hole binaries,” Phys.Rev. D90, 044018 (2014), arXiv:1406.6913 [gr-qc] .
- Alessandro Nagar et al., “Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects,” Phys. Rev. D98, 104052 (2018), arXiv:1806.01772 [gr-qc] .
- Tomas Andrade et al., “Towards numerical-relativity informed effective-one-body waveforms for dynamical capture black hole binaries,” (2023), arXiv:2307.08697 [gr-qc] .
- Simone Albanesi, Alessandro Nagar, and Sebastiano Bernuzzi, “Effective one-body model for extreme-mass-ratio spinning binaries on eccentric equatorial orbits: Testing radiation reaction and waveform,” Phys. Rev. D 104, 024067 (2021), arXiv:2104.10559 [gr-qc] .
- Alessandro Nagar and Piero Rettegno, “Efficient effective one body time-domain gravitational waveforms,” Phys. Rev. D99, 021501 (2019), arXiv:1805.03891 [gr-qc] .
- Md Arif Shaikh, Vijay Varma, Harald P. Pfeiffer, Antoni Ramos-Buades, and Maarten van de Meent, “Defining eccentricity for gravitational wave astronomy,” Phys. Rev. D 108, 104007 (2023), arXiv:2302.11257 [gr-qc] .
- Jeremy D. Schnittman, “Spin-orbit resonance and the evolution of compact binary systems,” Phys. Rev. D 70, 124020 (2004), arXiv:astro-ph/0409174 .
- Rossella Gamba et al., “Highly accurate simulations of eccentric, non-planar binary black holes systems,” .
- Ian Harry, Stephen Privitera, Alejandro Bohé, and Alessandra Buonanno, “Searching for Gravitational Waves from Compact Binaries with Precessing Spins,” Phys. Rev. D94, 024012 (2016), arXiv:1603.02444 [gr-qc] .
- Ian Harry, Juan Calderón Bustillo, and Alex Nitz, “Searching for the full symphony of black hole binary mergers,” Phys. Rev. D97, 023004 (2018), arXiv:1709.09181 [gr-qc] .
- “LIGO Document T0900288-v3,” https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974, Advanced LIGO anticipated sensitivity curves.
- Jake Mac Uilliam, Sarp Akcay, and Jonathan E. Thompson, “A Survey of Four Precessing Waveform Models for Binary Black Hole Systems,” (2024), arXiv:2402.06781 [gr-qc] .
- Raoul-Martin Memmesheimer, Achamveedu Gopakumar, and Gerhard Schaefer, “Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits,” Phys. Rev. D 70, 104011 (2004), arXiv:gr-qc/0407049 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.