Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Bayesian Correntropy Learning for Robust Muscle Activity Reconstruction from Noisy Brain Recordings (2404.15309v1)

Published 1 Apr 2024 in eess.SP, cs.LG, and q-bio.NC

Abstract: Sparse Bayesian learning has promoted many effective frameworks for brain activity decoding, especially for the reconstruction of muscle activity. However, existing sparse Bayesian learning mainly employs Gaussian distribution as error assumption in the reconstruction task, which is not necessarily the truth in the real-world application. On the other hand, brain recording is known to be highly noisy and contains many non-Gaussian noises, which could lead to significant performance degradation for sparse Bayesian learning method. The goal of this paper is to propose a new robust implementation for sparse Bayesian learning, so that robustness and sparseness can be realized simultaneously. Motivated by the great robustness of maximum correntropy criterion (MCC), we proposed an integration of MCC into the sparse Bayesian learning regime. To be specific, we derived the explicit error assumption inherent in the MCC and then leveraged it for the likelihood function. Meanwhile, we used the automatic relevance determination (ARD) technique for the sparse prior distribution. To fully evaluate the proposed method, a synthetic dataset and a real-world muscle activity reconstruction task with two different brain modalities were employed. Experimental results showed that our proposed sparse Bayesian correntropy learning framework improves significantly the robustness in a noisy regression task. The proposed method can realize higher correlation coefficient and lower root mean squared error in the real-world muscle activity reconstruction tasks. Sparse Bayesian correntropy learning provides a powerful tool for neural decoding which can promote the development of brain-computer interfaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. U. Chaudhary, N. Birbaumer, and A. Ramos-Murguialday, “Brain–computer interfaces for communication and rehabilitation,” Nature Reviews Neurology, vol. 12, no. 9, pp. 513–525, 2016.
  2. A. Kawala-Sterniuk, N. Browarska, A. Al-Bakri, M. Pelc, J. Zygarlicki, M. Sidikova, R. Martinek, and E. J. Gorzelanczyk, “Summary of over fifty years with brain-computer interfaces—a review,” Brain Sciences, vol. 11, no. 1, p. 43, 2021.
  3. M. A. Cervera, S. R. Soekadar, J. Ushiba, J. d. R. Millán, M. Liu, N. Birbaumer, and G. Garipelli, “Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis,” Annals of Clinical and Translational Neurology, vol. 5, no. 5, pp. 651–663, 2018.
  4. P. Wang, X. Cao, Y. Zhou, and D. Zhang, “A comprehensive review on motion trajectory reconstruction for eeg-based brain-computer interface,” Frontiers in Neuroscience, vol. 17, p. 1086472, 2023.
  5. P. Arpaia, A. Esposito, A. Natalizio, and M. Parvis, “How to successfully classify eeg in motor imagery bci: a metrological analysis of the state of the art,” Journal of Neural Engineering, vol. 19, no. 3, p. 031002, 2022.
  6. L. Bi, C. Guan et al., “A review on emg-based motor intention prediction of continuous human upper limb motion for human-robot collaboration,” Biomedical Signal Processing and Control, vol. 51, pp. 113–127, 2019.
  7. Y. Koike, “Motion estimation from surface emg signals using multi-array electrodes,” in Biomedical Engineering.   Jenny Stanford Publishing, 2024, pp. 133–151.
  8. Z. Qin, S. Stapornchaisit, Z. He, N. Yoshimura, and Y. Koike, “Multi–joint angles estimation of forearm motion using a regression model,” Frontiers in Neurorobotics, vol. 15, p. 685961, 2021.
  9. Z. Qin, Z. He, Y. Li, S. Saetia, and Y. Koike, “A cw-cnn regression model-based real-time system for virtual hand control,” Frontiers in Neurorobotics, vol. 16, p. 1072365, 2022.
  10. W.-k. Tam, T. Wu, Q. Zhao, E. Keefer, and Z. Yang, “Human motor decoding from neural signals: a review,” BMC Biomedical Engineering, vol. 1, pp. 1–22, 2019.
  11. T. Umeda, M. Koizumi, Y. Katakai, R. Saito, and K. Seki, “Decoding of muscle activity from the sensorimotor cortex in freely behaving monkeys,” NeuroImage, vol. 197, pp. 512–526, 2019.
  12. J. Wang, L. Bi, and W. Fei, “Eeg-based motor bcis for upper limb movement: Current techniques and future insights,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 4413–4427, 2023.
  13. T. Das, L. Gohain, N. M. Kakoty, M. Malarvili, P. Widiyanti, and G. Kumar, “Hierarchical approach for fusion of electroencephalography and electromyography for predicting finger movements and kinematics using deep learning,” Neurocomputing, vol. 527, pp. 184–195, 2023.
  14. G. Ganesh, E. Burdet, M. Haruno, and M. Kawato, “Sparse linear regression for reconstructing muscle activity from human cortical fmri,” NeuroImage, vol. 42, no. 4, pp. 1463–1472, 2008.
  15. A. Toda, H. Imamizu, M. Kawato, and M.-a. Sato, “Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse bayesian methods,” NeuroImage, vol. 54, no. 2, pp. 892–905, 2011.
  16. N. Yoshimura, C. S. DaSalla, T. Hanakawa, M.-a. Sato, and Y. Koike, “Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents,” NeuroImage, vol. 59, no. 2, pp. 1324–1337, 2012.
  17. N. Yoshimura, H. Tsuda, T. Kawase, H. Kambara, and Y. Koike, “Decoding finger movement in humans using synergy of eeg cortical current signals,” Scientific Reports, vol. 7, p. 11382, 2017.
  18. A. Mejia Tobar, R. Hyoudou, K. Kita, T. Nakamura, H. Kambara, Y. Ogata, T. Hanakawa, Y. Koike, and N. Yoshimura, “Decoding of ankle flexion and extension from cortical current sources estimated from non-invasive brain activity recording methods,” Frontiers in Neuroscience, vol. 11, p. 733, 2018.
  19. R. Sosnik and L. Zheng, “Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3d space using eeg current source dipoles,” Journal of Neural Engineering, vol. 18, p. 056011, 2021.
  20. H. Altaheri, G. Muhammad, M. Alsulaiman, S. U. Amin, G. A. Altuwaijri, W. Abdul, M. A. Bencherif, and M. Faisal, “Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review,” Neural Computing and Applications, vol. 35, no. 20, pp. 14 681–14 722, 2023.
  21. A. Hashemi, C. Cai, G. Kutyniok, K.-R. Müller, S. S. Nagarajan, and S. Haufe, “Unification of sparse bayesian learning algorithms for electromagnetic brain imaging with the majorization minimization framework,” NeuroImage, vol. 239, p. 118309, 2021.
  22. M. Qu, C. Chang, J. Wang, J. Hu, and N. Hu, “Nonnegative block-sparse bayesian learning algorithm for eeg brain source localization,” Biomedical Signal Processing and Control, vol. 77, p. 103838, 2022.
  23. W. Wang, F. Qi, D. P. Wipf, C. Cai, T. Yu, Y. Li, Y. Zhang, Z. Yu, and W. Wu, “Sparse bayesian learning for end-to-end eeg decoding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 15 632–15 649, 2023.
  24. T. Ball, M. Kern, I. Mutschler, A. Aertsen, and A. Schulze-Bonhage, “Signal quality of simultaneously recorded invasive and non-invasive eeg,” NeuroImage, vol. 46, no. 3, pp. 708–716, 2009.
  25. T. T. Liu, “Noise contributions to the fmri signal: An overview,” NeuroImage, vol. 143, pp. 141–151, 2016.
  26. T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown, V. Iragui, and T. J. Sejnowski, “Removing electroencephalographic artifacts by blind source separation,” Psychophysiology, vol. 37, no. 2, pp. 163–178, 2000.
  27. W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: Properties and applications in non-gaussian signal processing,” IEEE Transactions on Signal Processing, vol. 55, no. 11, pp. 5286–5298, 2007.
  28. Y. Li, B. Chen, G. Wang, N. Yoshimura, and Y. Koike, “Partial maximum correntropy regression for robust electrocorticography decoding,” Frontiers in Neuroscience, vol. 17, p. 1213035, 2023.
  29. A. Singh, R. Pokharel, and J. Principe, “The c-loss function for pattern classification,” Pattern Recognition, vol. 47, no. 1, pp. 441–453, 2014.
  30. G. Xu, B.-G. Hu, and J. C. Principe, “Robust c-loss kernel classifiers,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 3, pp. 510–522, 2016.
  31. Y. Li, B. Chen, Y. Shi, N. Yoshimura, and Y. Koike, “Correntropy-based logistic regression with automatic relevance determination for robust sparse brain activity decoding,” IEEE Transactions on Biomedical Engineering, vol. 70, no. 8, pp. 2416–2429, 2023.
  32. R. He, B.-G. Hu, W.-S. Zheng, and X.-W. Kong, “Robust principal component analysis based on maximum correntropy criterion,” IEEE Transactions on Image Processing, vol. 20, no. 6, pp. 1485–1494, 2011.
  33. Y. Li, B. Chen, O. Yamashita, N. Yoshimura, and Y. Koike, “Adaptive sparseness for correntropy-based robust regression via automatic relevance determination,” in 2023 International Joint Conference on Neural Networks (IJCNN), 2023, pp. 1–8.
  34. M. Tipping, “The relevance vector machine,” in Advances in Neural Information Processing Systems, vol. 12, 1999.
  35. M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, vol. 1, pp. 211–244, 2001.
  36. M. A. Figueiredo, “Adaptive sparseness for supervised learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1150–1159, 2003.
  37. C. M. Bishop and M. E. Tipping, “Variational relevance vector machines,” in Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence.   Morgan Kaufmann, 2000, pp. 46–53.
  38. I. Santamaría, P. P. Pokharel, and J. C. Principe, “Generalized correlation function: definition, properties, and application to blind equalization,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2187–2197, 2006.
  39. B. Chen, J. Wang, H. Zhao, N. Zheng, and J. C. Principe, “Convergence of a fixed-point algorithm under maximum correntropy criterion,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1723–1727, 2015.
  40. D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” in Advances in Neural Information Processing Systems, vol. 20, 2007.
  41. Y. Chen, C. Caramanis, and S. Mannor, “Robust sparse regression under adversarial corruption,” in Proceedings of the 30th International Conference on Machine Learning, vol. 28, 2013, pp. 774–782.
  42. X. Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,” Artificial Intelligence Review, vol. 22, pp. 177–210, 2004.
  43. Y. Koike and M. Kawato, “Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model,” Biological Cybernetics, vol. 73, no. 4, pp. 291–300, 1995.
  44. M.-a. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical bayesian estimation for meg inverse problem,” NeuroImage, vol. 23, no. 3, pp. 806–826, 2004.
  45. T. Yoshioka, K. Toyama, M. Kawato, O. Yamashita, S. Nishina, N. Yamagishi, and M.-a. Sato, “Evaluation of hierarchical bayesian method through retinotopic brain activities reconstruction from fmri and meg signals,” NeuroImage, vol. 42, no. 4, pp. 1397–1413, 2008.
  46. R. He, W.-S. Zheng, and B.-G. Hu, “Maximum correntropy criterion for robust face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1561–1576, 2010.
  47. W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, and B. Chen, “Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-gaussian environments,” Journal of the Franklin Institute, vol. 352, no. 7, pp. 2708–2727, 2015.
  48. F. Giummolè, V. Mameli, E. Ruli, and L. Ventura, “Objective bayesian inference with proper scoring rules,” Test, vol. 28, no. 3, pp. 728–755, 2019.
  49. T. Matsuda, M. Uehara, and A. Hyvärinen, “Information criteria for non-normalized models,” Journal of Machine Learning Research, vol. 22, no. 158, pp. 1–33, 2021.
  50. B. Chen, Y. Li, J. Dong, N. Lu, and J. Qin, “Common spatial patterns based on the quantized minimum error entropy criterion,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 11, pp. 4557–4568, 2020.
  51. Y. Li, B. Chen, N. Yoshimura, and Y. Koike, “Restricted minimum error entropy criterion for robust classification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 11, pp. 6599–6612, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com