Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Maximum Correntropy Regression for Robust Trajectory Decoding from Noisy Epidural Electrocorticographic Signals (2106.13086v2)

Published 23 Jun 2021 in eess.SP and cs.LG

Abstract: The Partial Least Square Regression (PLSR) exhibits admirable competence for predicting continuous variables from inter-correlated brain recordings in the brain-computer interface. However, PLSR is in essence formulated based on the least square criterion, thus, being non-robust with respect to noises. The aim of this study is to propose a new robust implementation for PLSR. To this end, the maximum correntropy criterion (MCC) is used to propose a new robust variant of PLSR, called as Partial Maximum Correntropy Regression (PMCR). The half-quadratic optimization is utilized to calculate the robust projectors for the dimensionality reduction, and the regression coefficients are optimized by a fixed-point approach. We evaluate the proposed PMCR with a synthetic example and the public Neurotycho electrocorticography (ECoG) datasets. The extensive experimental results demonstrate that, the proposed PMCR can achieve better prediction performance than the conventional PLSR and existing variants with three different performance indicators in high-dimensional and noisy regression tasks. PMCR can suppress the performance degradation caused by the adverse noise, ameliorating the decoding robustness of the brain-computer interface.

Citations (3)

Summary

We haven't generated a summary for this paper yet.