Tensor networks based quantum optimization algorithm (2404.15048v1)
Abstract: In optimization, one of the well-known classical algorithms is power iterations. Simply stated, the algorithm recovers the dominant eigenvector of some diagonalizable matrix. Since numerous optimization problems can be formulated as an eigenvalue/eigenvector search, this algorithm features wide applicability. Operationally, power iterations consist of performing repeated matrix-to-vector multiplications (or MatVec) followed by a renormilization step in order to converge to the dominant eigenvalue/eigenvector. However, classical realizations, including novel tensor network based approaches, necessitate an exponential scaling for the algorithm's run-time. In this paper, we propose a quantum realiziation to circumvent this pitfall. Our methodology involves casting low-rank representations; Matrix Product Operators (MPO) for matrices and Matrix Product States (MPS) for vectors, into quantum circuits. Specifically, we recover a unitary approximation by variationally minimizing the Frobenius distance between a target MPO and an MPO ansatz wherein the tensor cores are constrained to unitaries. Such an unitary MPO can easily be implemented as a quantum circuit with the addition of ancillary qubits. Thereafter, with appropriate initialization and post-selection on the ancillary space, we realize a single iteration of the classical algorithm. With our proposed methodology, power iterations can be realized entirely on a quantum computer via repeated, static circuit blocks; therefore, a run-time advantage can indeed be guaranteed. Moreover, by exploiting Riemannian optimization and cross-approximation techniques, our methodology becomes instance agnostic and thus allows one to address black-box optimization within the framework of quantum computing.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.