Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvalue bounds for the distance-$t$ chromatic number of a graph and their application to Lee codes (2404.14839v1)

Published 23 Apr 2024 in math.CO, cs.IT, and math.IT

Abstract: We derive eigenvalue bounds for the $t$-distance chromatic number of a graph, which is a generalization of the classical chromatic number. We apply such bounds to hypercube graphs, providing alternative spectral proofs for results by Ngo, Du and Graham [Inf. Process. Lett., 2002], and improving their bound for several instances. We also apply the eigenvalue bounds to Lee graphs, extending results by Kim and Kim [Discrete Appl. Math., 2011]. Finally, we provide a complete characterization for the existence of perfect Lee codes of minimum distance $3$. In order to prove our results, we use a mix of spectral and number theory tools. Our results, which provide the first application of spectral methods to Lee codes, illustrate that such methods succeed to capture the nature of the Lee metric.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com