Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dense Error-Correcting Codes in the Lee Metric (1004.0366v1)

Published 2 Apr 2010 in cs.IT and math.IT

Abstract: Several new applications and a number of new mathematical techniques have increased the research on error-correcting codes in the Lee metric in the last decade. In this work we consider several coding problems and constructions of error-correcting codes in the Lee metric. First, we consider constructions of dense error-correcting codes in relatively small dimensions over small alphabets. The second problem we solve is construction of diametric perfect codes with minimum distance four. We will construct such codes over various lengths and alphabet sizes. The third problem is to transfer an n-dimensional Lee sphere with large radius into a shape, with the same volume, located in a relatively small box. Hadamard matrices play an essential role in the solutions for all three problems. A construction of codes based on Hadamard matrices will start our discussion. These codes approach the sphere packing bound for very high rate range and appear to be the best known codes over some sets of parameters.

Citations (19)

Summary

We haven't generated a summary for this paper yet.