Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 158 tok/s Pro
2000 character limit reached

Evolutionary Reinforcement Learning via Cooperative Coevolution (2404.14763v3)

Published 23 Apr 2024 in cs.NE and cs.AI

Abstract: Recently, evolutionary reinforcement learning has obtained much attention in various domains. Maintaining a population of actors, evolutionary reinforcement learning utilises the collected experiences to improve the behaviour policy through efficient exploration. However, the poor scalability of genetic operators limits the efficiency of optimising high-dimensional neural networks.To address this issue, this paper proposes a novel cooperative coevolutionary reinforcement learning (CoERL) algorithm. Inspired by cooperative coevolution, CoERL periodically and adaptively decomposes the policy optimisation problem into multiple subproblems and evolves a population of neural networks for each of the subproblems. Instead of using genetic operators, CoERL directly searches for partial gradients to update the policy. Updating policy with partial gradients maintains consistency between the behaviour spaces of parents and offspring across generations.The experiences collected by the population are then used to improve the entire policy, which enhances the sampling efficiency.Experiments on six benchmark locomotion tasks demonstrate that CoERL outperforms seven state-of-the-art algorithms and baselines.Ablation study verifies the unique contribution of CoERL's core ingredients.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets