Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Structure of Receive Beamforming for Over-the-Air Computation (2404.14036v1)

Published 22 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: We investigate fast data aggregation via over-the-air computation (AirComp) over wireless networks. In this scenario, an access point (AP) with multiple antennas aims to recover the arithmetic mean of sensory data from multiple wireless devices. To minimize estimation distortion, we formulate a mean-squared-error (MSE) minimization problem that considers joint optimization of transmit scalars at wireless devices, denoising factor, and receive beamforming vector at the AP. We derive closed-form expressions for the transmit scalars and denoising factor, resulting in a non-convex quadratic constrained quadratic programming (QCQP) problem concerning the receive beamforming vector. To tackle the computational complexity of the beamforming design, particularly relevant in massive multiple-input multiple-output (MIMO) AirComp systems, we explore the optimal structure of receive beamforming using successive convex approximation (SCA) and Lagrange duality. By leveraging the proposed optimal beamforming structure, we develop two efficient algorithms based on SCA and semi-definite relaxation (SDR). These algorithms enable fast wireless aggregation with low computational complexity and yield almost identical mean square error (MSE) performance compared to baseline algorithms. Simulation results validate the effectiveness of our proposed methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, Mar. 2020.
  2. W. Fang, M. Fu, K. Wang, Y. Shi, and Y. Zhou, “Stochastic beamforming for reconfigurable intelligent surface aided over-the-air computation,” in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2020.
  3. W. Fang, Y. Jiang, Y. Shi, Y. Zhou, W. Chen, and K. B. Letaief, “Over-the-air computation via reconfigurable intelligent surface,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8612–8626, 2021.
  4. W. Liu, X. Zang, Y. Li, and B. Vucetic, “Over-the-air computation systems: Optimization, analysis and scaling laws,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5488–5502, Aug. 2020.
  5. X. Cao, G. Zhu, J. Xu, and K. Huang, “Optimized power control for over-the-air computation in fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7498–7513, Nov. 2020.
  6. L. Chen, X. Qin, and G. Wei, “A uniform-forcing transceiver design for over-the-air function computation,” IEEE Wireless Commun. Lett., vol. 7, no. 6, pp. 942–945, Dec. 2018.
  7. L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Over-the-air computation for IoT networks: Computing multiple functions with antenna arrays,” IEEE Internet Things J., vol. 5, no. 6, pp. 5296–5306, Jun. 2018.
  8. G. Zhu and K. Huang, “MIMO over-the-air computation for high-mobility multimodal sensing,” IEEE Internet Things J., vol. 6, no. 4, pp. 6089–6103, Aug. 2019.
  9. W. Fang, Y. Zou, H. Zhu, Y. Shi, and Y. Zhou, “Optimal receive beamforming for over-the-air computation,” in Proc. IEEE International Workshop on Signal Process. Advances in Wireless Commun. (SPAWC), pp. 61–65, Sep. 2021.
  10. M. Dong and Q. Wang, “Multi-group multicast beamforming: Optimal structure and efficient algorithms,” IEEE Trans. Signal Process., vol. 68, pp. 3738–3753, 2020.
  11. B. R. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathematical programs,” Oper. Res., vol. 26, no. 4, pp. 681–683, 1978.
  12. N. D. Sidiropoulos, T. N. Davidson, and Z. Luo, “Transmit beamforming for physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54, no. 6-1, pp. 2239–2251, 2006.

Summary

We haven't generated a summary for this paper yet.