Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Beamforming for Reconfigurable Intelligent Surface Aided Over-the-Air Computation (2005.10625v2)

Published 21 May 2020 in cs.IT, eess.SP, and math.IT

Abstract: Over-the-air computation (AirComp) is a promising technology that is capable of achieving fast data aggregation in Internet of Things (IoT) networks. The mean-squared error (MSE) performance of AirComp is bottlenecked by the unfavorable channel conditions. This limitation can be mitigated by deploying a reconfigurable intelligent surface (RIS), which reconfigures the propagation environment to facilitate the receiving power equalization. The achievable performance of RIS relies on the availability of accurate channel state information (CSI), which however is generally difficult to be obtained. In this paper, we consider an RIS-aided AirComp IoT network, where an access point (AP) aggregates sensing data from distributed devices. Without assuming any prior knowledge on the underlying channel distribution, we formulate a stochastic optimization problem to maximize the probability that the MSE is below a certain threshold. The formulated problem turns out to be non-convex and highly intractable. To this end, we propose a data-driven approach to jointly optimize the receive beamforming vector at the AP and the phase-shift vector at the RIS based on historical channel realizations. After smoothing the objective function by adopting the sigmoid function, we develop an alternating stochastic variance reduced gradient (SVRG) algorithm with a fast convergence rate to solve the problem. Simulation results demonstrate the effectiveness of the proposed algorithm and the importance of deploying an RIS in reducing the MSE outage probability.

Citations (12)

Summary

We haven't generated a summary for this paper yet.