Beyond MMSE: Rank-1 Subspace Channel Estimator for Massive MIMO Systems (2404.13603v1)
Abstract: To glean the benefits offered by massive multi-input multi-output (MIMO) systems, channel state information must be accurately acquired. Despite the high accuracy, the computational complexity of classical linear minimum mean squared error (MMSE) estimator becomes prohibitively high in the context of massive MIMO, while the other low-complexity methods degrade the estimation accuracy seriously. In this paper, we develop a novel rank-1 subspace channel estimator to approximate the maximum likelihood (ML) estimator, which outperforms the linear MMSE estimator, but incurs a surprisingly low computational complexity. Our method first acquires the highly accurate angle-of-arrival (AoA) information via a constructed space-embedding matrix and the rank-1 subspace method. Then, it adopts the post-reception beamforming to acquire the unbiased estimate of channel gains. Furthermore, a fast method is designed to implement our new estimator. Theoretical analysis shows that the extra gain achieved by our method over the linear MMSE estimator grows according to the rule of O($\log_{10}M$), while its computational complexity is linearly scalable to the number of antennas $M$. Numerical simulations also validate the theoretical results. Our new method substantially extends the accuracy-complexity region and constitutes a promising channel estimation solution to the emerging massive MIMO communications.
- T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.
- H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.
- J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.
- E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
- F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
- S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to large-scale MIMOs,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1941–1988, Fourth Quarter 2015.
- N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 106–113, Apr. 2021.
- J. Wang, C.-X. Wang, J. Huang, H. Wang, and X. Gao, “A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1576–1589, Jun. 2021.
- M. Cheng, S. Yang, and X. Fang, “Adaptive antenna-activation based beamforming for large-scale MIMO communication systems of high speed railway,” China Commun., vol. 13, no. 9, pp. 12–23, Sep. 2016.
- S. Yang, C. Zhou, T. Lv, and L. Hanzo, “Large-scale MIMO is capable of eliminating power-thirsty channel coding for wireless transmission of HEVC/H.265 video,” IEEE Wireless Commun., vol. 23, no. 3, pp. 57–63, Jun. 2016.
- N. Shariati, J. Wang, and M. Bengtsson, “Robust training sequence design for correlated MIMO channel estimation,” IEEE Trans. Signal Process., vol. 62, no. 1, pp. 107–120, Jan. 2014.
- A. Hu, T. Lv, H. Gao, Z. Zhang, and S. Yang, “An ESPRIT-based approach for 2-D localization of incoherently distributed sources in massive MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 996–1011, Oct. 2014.
- T. Lv, F. Tan, H. Gao, and S. Yang, “A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems,” Signal Processing, vol. 121, pp. 30–45, Apr. 2016.
- Y. Zhou, Z. Fei, S. Yang, J. Kuang, S. Chen, and L. Hanzo, “Joint angle estimation and signal reconstruction for coherently distributed sources in massive MIMO systems based on 2-D unitary esprit,” IEEE Access, vol. 5, pp. 9632–9646, 2017.
- T. Lv, S. Yang, and H. Gao, “Semi-blind channel estimation relying on optimum pilots designed for multi-cell large-scale MIMO systems,” IEEE Access, vol. 4, pp. 1190–1204, 2016.
- H. Wang, G. Li, S. Zheng, S. Yang, and P. Pan, “An approach to reduce the overhead of training sequences in FDD massive MIMO downlink systems,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1301–1305, Aug. 2019.
- N. Shariati, E. Björnson, M. Bengtsson, and M. Debbah, “Low-complexity polynomial channel estimation in large-scale MIMO with arbitrary statistics,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 815–830, Oct. 2014.
- B. Li, S. Wang, J. Zhang, X. Cao, and C. Zhao, “Randomized approximate channel estimator in massive-MIMO communication,” IEEE Commun. Lett., vol. 24, no. 10, pp. 2314 – 2318, Oct. 2020.
- H. Xie, F. Gao, and S. Jin, “An overview of low-rank channel estimation for massive MIMO systems,” IEEE Access, vol. 4, pp. 7313–7321, 2016.
- W. Shen, L. Dai, B. Shim, S. Mumtaz, and Z. Wang, “Joint CSIT acquisition based on low-rank matrix completion for FDD massive MIMO systems,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2178–2181, Dec. 2015.
- P. A. Eliasi, S. Rangan, and T. S. Rappaport, “Low-rank spatial channel estimation for millimeter wave cellular systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2748–2759, May 2017.
- S. Moshavi, E. Kanterakis, and D. L. Schilling, “Multistage linear receivers for DS-CDMA systems,” International Journal of Wireless Information Networks, vol. 3, pp. 1–17, Jan. 1996.
- W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed channel sensing: A new approach to estimating sparse multipath channels,” Proc. IEEE, vol. 98, no. 6, pp. 1058–1076, Jun. 2010.
- A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.
- A. Alkhateeb, G. Leus, and R. W. Heath, “Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?” in Proc. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, Apr. 2015, pp. 2909–2913.
- Z. Gao, C. Hu, L. Dai, and Z. Wang, “Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1259–1262, Jun. 2016.
- J. Rodriguezfernandez, N. Gonzalezprelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 2946–2960, May 2018.
- C. Huang, L. Liu, and C. Yuen, “Asymptotically optimal estimation algorithm for the sparse signal with arbitrary distributions,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10 070–10 075, Oct. 2018.
- C. Huang, L. Liu, C. Yuen, and S. Sun, “Iterative channel estimation using LSE and sparse message passing for mm-Wave MIMO systems,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 245–259, Jan. 2019.
- H. Krim and M. Viberg, “Two decades of array signal processing research: The parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, Jul. 1996.
- R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar. 1986.
- B. Li, S. Wang, J. Zhang, X. Cao, and C. Zhao, “Ultra-fast accurate AoA estimation via automotive massive-MIMO radar,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 1172–1186, Feb. 2022.
- Z. Guo, X. Wang, and W. Heng, “Millimeter-wave channel estimation based on 2-D beamspace MUSIC method,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5384–5394, Aug. 2017.
- D. Fan, F. Gao, G. Wang, Z. Zhong, and A. Nallanathan, “Angle domain signal processing-aided channel estimation for indoor 60GHz TDD/FDD massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1948–1961, Sep. 2017.
- W. Liao and A. Fannjiang, “MUSIC for single-snapshot spectral estimation: Stability and super-resolution,” Applied and Computational Harmonic Analysis, vol. 40, no. 1, pp. 33–67, Jan. 2016.
- S. Fortunati, R. Grasso, F. Gini, M. S. Greco, and K. LePage, “Single-snapshot DOA estimation by using compressed sensing,” EURASIP Journal on Advances in Signal Processing, vol. 2014, no. 120, pp. 1–17, Jul. 2014.
- M. A. Maisto, A. Dell’Aversano, I. Russo, A. Brancaccio, and R. Solimene, “A single-snapshot MUSIC algorithm for ADAS radar processing,” in Proc. 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, May 2022, pp. 1–6.
- J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3814–3827, Jul. 2013.
- L. Dai, X. Gao, S. Han, I. Chih-Lin, and X. Wang, “Beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array,” in Proc. 2016 IEEE/CIC International Conference on Communications in China (ICCC), Chengdu, China, Jul. 2016, pp. 1–6.
- B. Li, Z. Zhou, W. Zou, X. Sun, and G. Du, “On the efficient beam-forming training for 60GHz wireless personal area networks,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 504–515, Feb. 2013.
- B. Li, C. Zhao, M. Sun, H. Zhang, Z. Zhou, and A. Nallanathan, “A Bayesian approach for nonlinear equalization and signal detection in millimeter-wave communications,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3794–3809, Jul. 2015.
- C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-Wave multipath clustering and channel modeling,” IEEE Trans. Antennas Propag., vol. 62, no. 3, pp. 1445–1455, Mar. 2014.
- M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
- D. Lai and G. Chen, “Dynamical systems identification from time-series data: A hankel matrix approach,” Mathematical and Computer Modelling, vol. 24, no. 3, pp. 1–10, Aug. 1996.
- L. Lo Presti, M. La Cascia, S. Sclaroff, and O. Camps, “Hankelet-based dynamical systems modeling for 3D action recognition,” Image and Vision Computing, vol. 44, pp. 29–43, Dec. 2015.
- C. Georgakis, Y. Panagakis, and M. Pantic, “Dynamic behavior analysis via structured rank minimization,” International Journal of Computer Vision, vol. 126, pp. 333–357, Apr. 2018.
- P. Hacker and B. Yang, “Single snapshot DOA estimation,” Advances in Radio Science, vol. 8, pp. 251–256, Oct. 2010.
- R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.
- B. Li, S. Wang, Z. Feng, J. Zhang, X. Cao, and C. Zhao, “Fast pseudospectrum estimation for automotive massive MIMO radar,” IEEE Internet of Things Journal, vol. 8, no. 20, pp. 15 303–15 316, Oct. 2021.
- D. P. Woodruff, “Sketching as a tool for numerical linear algebra,” Foundations and Trends® in Theoretical Computer Science, vol. 10, no. 1–2, pp. 1–157, 2014.
- S. Wang, L. Luo, and Z. Zhang, “SPSD matrix approximation vis column selection: Theories, algorithms, and extensions,” Journal of Machine Learning Research, vol. 17, no. 49, pp. 1697–1745, May 2016.
- P. Drineas and M. W. Mahoney, “On the Nystro¨¨o\ddot{\text{o}}over¨ start_ARG o end_ARGm method for approximating a Gram matrix for improved kernel-based learning,” Journal of Machine Learning Research, vol. 6, no. 72, pp. 2153–2175, Dec. 2005.
- P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 5, pp. 720–741, May 1989.
- M. Dong and L. Tong, “Optimal design and placement of pilot symbols for channel estimation,” IEEE Trans. Signal Process., vol. 50, no. 12, pp. 3055–3069, Dec. 2002.
- L. Berriche, K. Abed-Meraim, and J.-C. Belfiore, “Cramer-Rao bounds for MIMO channel estimation,” in Proc. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. IV, Montreal, Canada, May 2004, pp. 397–400.
- B. Li, P. Chen, H. Liu, W. Guo, X. B. Cao, J. Z. Du, C. L. Zhao, and J. Zhang, “Random sketch learning for deep neural networks in edge computing,” Nature Computational Science, vol. 1, pp. 221–228, Mar. 2021.
- B. Li, Z. P. Wei, J. T. Wu, S. Yu, T. Zhang, C. L. Zhu, D. Z. Zheng, W. S. Guo, C. L. Zhao, and J. Zhang, “Machine learning-enabled globally guaranteed evolutionary computation,” Nature Machine Intelligence, vol. 5, no. 4, p. 457–467, 2023.
- A. Gittens and M. W. Mahoney, “Revisiting the Nystro¨¨o\ddot{\text{o}}over¨ start_ARG o end_ARGm method for improved large-scale machine learning,” Journal of Machine Learning Research, vol. 17, no. 117, pp. 3977–4041, Apr. 2016.
- E. Balevi, A. Doshi, and J. G. Andrews, “Massive MIMO channel estimation with an untrained deep neural network,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2079–2090, Mar. 2020.
- T. Yoo and A. Goldsmith, “Capacity and power allocation for fading MIMO channels with channel estimation error,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2203–2214, May 2006.
- N. Fatema, G. Hua, Y. Xiang, D. Peng, and I. Natgunanathan, “Massive mimo linear precoding: A survey,” IEEE Systems Journal, pp. 1–12, 2018.
- A. Forenza, D. J. Love, and R. W. Heath, “Simplified spatial correlation models for clustered mimo channels with different array configurations,” IEEE Trans. Veh. Technol., vol. 56, pp. 1924–1934, 2007.
- J. J. Ma and P. Li, “Orthogonal AMP,” IEEE Access, pp. 2020–2033, 2017.
- L. Liu, S. Huang, and B. M. Kurkoski, “Memory AMP,” IEEE Transactions on Information Theory, pp. 8015–8039, 2022.
- C. Fan, B. Li, C. Zhao, W. Guo, and Y. Liang, “Learning-based spectrum sharing and spatial reuse in mm-Wave ultradense networks,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 4954–4968, Jun. 2018.