Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MMSE Channel Estimation in Large-Scale MIMO: Improved Robustness with Reduced Complexity (2404.03279v2)

Published 4 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: Large-scale MIMO systems with a massive number N of individually controlled antennas pose significant challenges for minimum mean square error (MMSE) channel estimation, based on uplink pilots. The major ones arise from the computational complexity, which scales with $N3$, and from the need for accurate knowledge of the channel statistics. This paper aims to address both challenges by introducing reduced-complexity channel estimation methods that achieve the performance of MMSE in terms of estimation accuracy and uplink spectral efficiency while demonstrating improved robustness in practical scenarios where channel statistics must be estimated. This is achieved by exploiting the inherent structure of the spatial correlation matrix induced by the array geometry. Specifically, we use a Kronecker decomposition for uniform planar arrays and a well-suited circulant approximation for uniform linear arrays. By doing so, a significantly lower computational complexity is achieved, scaling as $N\sqrt{N}$ and $N\log N$ for squared planar arrays and linear arrays, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A. A. D’Amico, G. Bacci, and L. Sanguinetti, “DFT-based channel estimation for holographic MIMO,” in Proc. Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, Oct.-Nov. 2023.
  2. E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.
  3. E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T. L. Marzetta, “Massive MIMO is a reality – What is next?” Digit. Signal Process., vol. 94, no. C, pp. 3–20, nov 2019. [Online]. Available: https://doi.org/10.1016/j.dsp.2019.06.007
  4. L. Sanguinetti, E. Björnson, and J. Hoydis, “Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination,” IEEE Trans. Commun., vol. 68, no. 1, pp. 232–257, 2020.
  5. Z. Wang, J. Zhang, H. Du, W. E. I. Sha, B. Ai, D. Niyato, and M. Debbah, “Extremely large-scale MIMO: Fundamentals, challenges, solutions, and future directions,” IEEE Wireless Communications, pp. 1–9, 2023.
  6. E. Björnson, C.-B. Chae, R. W. Heath, T. L. Marzetta, A. Mezghani, L. Sanguinetti, F. Rusek, M. R. Castellanos, D. Jun, and O. T. Demir, “Towards 6G MIMO: Massive spatial multiplexing, dense arrays, and interplay between electromagnetics and processing,” 2024.
  7. J. An, C. Yuen, C. Huang, M. Debbah, H. V. Poor, and L. Hanzo, “A tutorial on holographic MIMO communications – part I: Channel modeling and channel estimation,” IEEE Commun. Letters, vol. 27, no. 7, pp. 1664–1668, 2023.
  8. J. An, C. Xu, L. Gan, and L. Hanzo, “Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems relying on discrete phase shifts,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1245–1260, 2022.
  9. Y. Liu, Z. Tan, H. Hu, L. J. Cimini, and G. Y. Li, “Channel estimation for OFDM,” IEEE Commun. Surv. Tut., vol. 16, no. 4, pp. 1891–1908, 2014.
  10. F. Dai and J. Wu, “Efficient broadcasting in ad hoc wireless networks using directional antennas,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 4, pp. 335–347, 2006.
  11. Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3380–3392, 2016.
  12. J. Zhang, Y. Huang, Q. Shi, J. Wang, and L. Yang, “Codebook design for beam alignment in millimeter wave communication systems,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4980–4995, 2017.
  13. S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5689–5701, 2017.
  14. Z. Wan, Z. Gao, F. Gao, M. Di Renzo, and M.-S. Alouini, “Terahertz massive MIMO with holographic reconfigurable intelligent surfaces,” IEEE Trans. Commun., vol. 69, no. 7, pp. 4732–4759, 2021.
  15. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, 2022.
  16. M. Ghermezcheshmeh and N. Zlatanov, “Parametric channel estimation for LoS dominated holographic massive MIMO systems,” IEEE Access, pp. 44 711–44 724, 2023.
  17. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, 2022.
  18. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, 2022.
  19. E. Björnson, L. Sanguinetti, and M. Debbah, “Massive MIMO with imperfect channel covariance information,” in Proc. Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, USA, 2016, pp. 974–978.
  20. C. Van Loan and N. Pitsianis, “Approximation with Kronecker products,” in Linear Algebra for Large Scale and Real Time Applications, M. S. Moonen and G. H. Golub, Eds.   Dordrecht, The Netherlands: Kluwer Publications, 1992, pp. 293–314.
  21. C. F. Van Loan, “The ubiquitous Kronecker product,” J. Computational and Applied Mathematics, vol. 123, pp. 85–100, 2000.
  22. J. Pearl, “Basis-restricted transformations and performance measures for spectral representations (corresp.),” IEEE Trans. Information Theory, vol. 17, no. 6, pp. 751–752, 1971.
  23. ——, “On coding and filtering stationary signals by discrete fourier transforms (corresp.),” IEEE Trans. Information Theory, vol. 19, no. 2, pp. 229–232, 1973.
  24. Z. Zhu and M. B. Wakin, “On the asymptotic equivalence of circulant and Toeplitz matrices,” IEEE Trans. Information Theory, vol. 63, no. 5, pp. 2975–2992, 2017.
  25. E. Björnson and L. Sanguinetti, “Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces,” IEEE Wireless Commun. Letters, vol. 10, no. 4, pp. 830–834, 2021.
  26. A. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2563–2579, 2002.
  27. R. Zhang, X. Lu, J. Zhao, L. Cai, and J. Wang, “Measurement and modeling of angular spreads of three-dimensional urban street radio channels,” IEEE Trans. Veh. Technol., pp. 3555–3570, 2017.
  28. M. Wax and T. Kailath, “Efficient inversion of Toeplitz-block Toeplitz matrix,” IEEE Trans. Acoustics, Speech, and Signal Process., vol. 31, no. 5, pp. 1218–1221, 1983.
  29. F. W. Trench, “Numerical solution of the eigenvalue problem for Hermitian Toeplitz matrices,” SIAM J. Matrix Analysis and Applications, vol. 10, no. 2, pp. 135–146, 1989.
  30. T. Dayar and M. C. Orhan, “On vector-kronecker product multiplication with rectangular factors,” SIAM J. Scientific Computing, vol. 37, no. 5, pp. S526–S543, 2015. [Online]. Available: https://doi.org/10.1137/140980326
Citations (2)

Summary

We haven't generated a summary for this paper yet.