Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

The Cosmological Constant Problem and the Extra Dimensions of $\mathcal{N}=2$ $\mathcal{D}=5$ Supergravity (2404.13448v1)

Published 20 Apr 2024 in hep-ph

Abstract: We propose an interpretation for the cosmological constant problem based on modeling the universe as a 3-brane embedded in the bulk of 5-dimensional supergravity with hypermultiplets. When solving the modified Friedmann equations the complex structure moduli of the Calabi-Yau manifold cancel the large value of the vacuum energy density on the brane, wherein this value transfers to an Anti-de Sitter fifth dimensional bulk compactified on a scale $ (\sim 10{-26} ~\text{m}) $. An effective dark energy density is produced on the brane which equals the observed value responsible for the late-time acceleration of the universe. The bulk undergoes a decelerated contraction while we show that cosmic expansion of the brane-universe consists with the recent observed data of the $\Lambda$CDM model. On the other hand, through this model, the hierarchy between the electroweak scale $(M_{EW}= 100 ~ \text{GeV})$ and the Planck scale $(M_{pl} \sim 10{18} ~ \text{GeV})$ is interpreted by compactifying the 6-extra dimensions of $\mathcal{D}=5$ supergravity on a sub-millimeters scale, where the fundamental scale of gravity within these extra dimensions is $\mathcal{M}_{EW}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Y.B. Zel’dovich, “Cosmological constant and elementary particles,” JETP Lett. 6 (1967) 316–317.
  2. S.E. Rugh, H. Zinkernagel, “The quantum vacuum and the cosmological constant problem,” Stud. Hist. Philos. Sci. B 33 (2002) 663–705 [arXiv:hep- th/0012253].
  3. Ceresole, Anna and Dall’Agata, Gianguido, “General matter coupled 𝒩=2,𝒟=5formulae-sequence𝒩2𝒟5\mathcal{N}=2,~{}\mathcal{D}=5caligraphic_N = 2 , caligraphic_D = 5 gauged supergravity,” Nucl.  Phys.  B  585, 143-170 (2000) [arXiv:0004111 [hep-th]].
  4. Celi, Alessio, “Toward the classification of BPS solutions of 𝒩=2,𝒟=5formulae-sequence𝒩2𝒟5\mathcal{N}=2,~{}\mathcal{D}=5caligraphic_N = 2 , caligraphic_D = 5 gauged supergravity with matter couplings,” (2003) [arXiv:0405283 [hep-th]].
  5. P.J.E. Peebles, “Tests of Cosmological Models Constrained by Inflation,” Astrophys. J. 284 (1984) 439
  6. M.S. Turner, “The third cosmological paradigm; The Road to Precision Cosmology,” Annu. Rev. Nucl. Part. Sci. 72 (2022) 1 [arXiv:2201.04741].
  7. N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, “The hierarchy problem and new dimensions at a millimeter,” Phys. Lett. B 429, 263 (1998) [arXiv:hep- ph/9803315]; N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, “Phenomenol- ogy, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity,” Phys. Rev. D 59,086004 (1999) [arXiv:hep- ph/9807344].
  8. Safinaz Salem, “The hierarchy problem and 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 𝒟=5𝒟5\mathcal{D}=5caligraphic_D = 5 supergravity“, Phys.Dark Univ. 43 (2024) 101400.
  9. O. Bertolami, P. Frazão, and J. Páramos, “Accelerated expansion from a nonminimal gravitational coupling to matter“, Phys. Rev. D 81 (2010) 104046.
  10. S.M.M. Rasouli, R. Pacheco, M. Sakellariadou, and P.V. Moniz, “ Late time cosmic acceleration in modified Sáez–Ballester theory,“ Phys. Dark Univ. 27 (2020) 100446 [arXiv:1911.03901 [gr-qc]]
  11. C. P. Burgess, R.C. Myers and F. Quevedo, “A Naturally small cosmological constant on the brane?,” Phys. Lett. B 495 (2000) 384 [arXiv:hep-th/9911164].
  12. Alberto Iglesias, Zurab Kakushadze, “A Novel approach to the cosmological constant problem,” Int. J. Mod. Phys. A 19 (2004) 4621 [arXiv:hep-th/0306297].
  13. Guang-Zhen Kang, De-Sheng Zhang, Hong-Shi Zong and Jun Li, “Fine tuning problem of the cosmological constant in a generalized Randall-Sundrum model,” Chin. Phys. C 44 (2020) 125102 [arXiv:gr-qc/1906.05442].
  14. Canestaro, Charles A. and Emam, Moataz H., “The five dimensional universal hypermultiplet and the cosmological constant problem,” Phys.  Lett.  B  726, 913-917 (2013) [arXiv:1311.0266 [hep-th]].
  15. Emam, Moataz H., Salah, H. H., Salem, Safinaz, “Brane-worlds and the Calabi––\textendash{}–Yau complex structure moduli,” Class.  Quant.  Grav.  37, no. 19, 195007 (2020) [arXiv:2005.10408 [hep-th]].
  16. L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett. 80, 4690 (1999) [arXiv:hep-th/9906064].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com