Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D-Convolution Guided Spectral-Spatial Transformer for Hyperspectral Image Classification (2404.13252v1)

Published 20 Apr 2024 in cs.CV, cs.LG, and eess.IV

Abstract: In recent years, Vision Transformers (ViTs) have shown promising classification performance over Convolutional Neural Networks (CNNs) due to their self-attention mechanism. Many researchers have incorporated ViTs for Hyperspectral Image (HSI) classification. HSIs are characterised by narrow contiguous spectral bands, providing rich spectral data. Although ViTs excel with sequential data, they cannot extract spectral-spatial information like CNNs. Furthermore, to have high classification performance, there should be a strong interaction between the HSI token and the class (CLS) token. To solve these issues, we propose a 3D-Convolution guided Spectral-Spatial Transformer (3D-ConvSST) for HSI classification that utilizes a 3D-Convolution Guided Residual Module (CGRM) in-between encoders to "fuse" the local spatial and spectral information and to enhance the feature propagation. Furthermore, we forego the class token and instead apply Global Average Pooling, which effectively encodes more discriminative and pertinent high-level features for classification. Extensive experiments have been conducted on three public HSI datasets to show the superiority of the proposed model over state-of-the-art traditional, convolutional, and Transformer models. The code is available at https://github.com/ShyamVarahagiri/3D-ConvSST.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. D. Hong, W. He, N. Yokoya, J. Yao, L. Gao, L. Zhang, J. Chanussot, and X. Zhu, “Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing,” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 2, pp. 52–87, 2021.
  2. P. Ghamisi, E. Maggiori, S. Li, R. Souza, Y. Tarablaka, G. Moser, A. De Giorgi, L. Fang, Y. Chen, M. Chi, S. Serpico, and J. Benediktsson, “New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning,” IEEE Geoscience and Remote Sensing Magazine, vol. 6, pp. 10–43, 09 2018.
  3. J. Yuan, S. Wang, C. Wu, and Y. Xu, “Fine-grained classification of urban functional zones and landscape pattern analysis using hyperspectral satellite imagery: A case study of wuhan,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3972–3991, 2022.
  4. B. Lu, Y. He, and P. D. Dao, “Comparing the performance of multispectral and hyperspectral images for estimating vegetation properties,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 6, pp. 1784–1797, 2019.
  5. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 8, pp. 1778–1790, 2004.
  6. J. Ham, Y. Chen, M. Crawford, and J. Ghosh, “Investigation of the random forest framework for classification of hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 492–501, 2005.
  7. S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep learning for hyperspectral image classification: An overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6690–6709, 2019.
  8. ——, “Deep learning for hyperspectral image classification: An overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6690–6709, 2019.
  9. K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep supervised learning for hyperspectral data classification through convolutional neural networks,” in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015, pp. 4959–4962.
  10. W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 2015.
  11. W. Zhao and S. Du, “Spectral–spatial feature extraction for hyper- spectral image classificationspectral–spatial feature extraction for hyper- spectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, p. 4729–4742, 2017.
  12. J. Yang, Y.-Q. Zhao, and J. C.-W. Chan, “Learning and transferring deep joint spectral–spatial features for hyperspectral classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4729–4742, 2017.
  13. X. Xu, W. Li, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource remote sensing data classification based on convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 937–949, 2017.
  14. A. B. Hamida, A. Benoit, P. Lambert, and C. B. Amar, “3-d deep learning approach for remote sensing image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 8, pp. 4420–4434, 2018.
  15. Y. Luo, J. Zou, C. Yao, X. Zhao, T. Li, and G. Bai, “Hsi-cnn: A novel convolution neural network for hyperspectral image,” in 2018 International Conference on Audio, Language and Image Processing (ICALIP).   IEEE, 2018, pp. 464–469.
  16. S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “Hybridsn: Exploring 3-d–2-d cnn feature hierarchy for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 2, pp. 277–281, 2019.
  17. Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–spatial residual network for hyperspectral image classification: A 3-d deep learning framework,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 847–858, 2017.
  18. M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza, and F. Pla, “Deep pyramidal residual networks for spectral-spatial hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 740–754, 2018.
  19. X. He, Y. Chen, and Z. Lin, “Spatial-spectral transformer for hyperspectral image classification,” Remote Sensing, vol. 13, no. 3, p. 498, 2021.
  20. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  21. J. Zhang, Z. Meng, F. Zhao, H. Liu, and Z. Chang, “Convolution transformer mixer for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  22. L. Sun, G. Zhao, Y. Zheng, and Z. Wu, “Spectral–spatial feature tokenization transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  23. S. Mei, C. Song, M. Ma, and F. Xu, “Hyperspectral image classification using group-aware hierarchical transformer,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  24. D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot, “Spectralformer: Rethinking hyperspectral image classification with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  25. Z. Zhong, Y. Li, L. Ma, J. Li, and W.-S. Zheng, “Spectral–spatial transformer network for hyperspectral image classification: A factorized architecture search framework,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  26. S. K. Roy, A. Deria, C. Shah, J. M. Haut, Q. Du, and A. Plaza, “Spectral–spatial morphological attention transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
  27. P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Hetconv: Heterogeneous kernel-based convolutions for deep cnns,” 2019.
  28. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” 2015.
  29. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.
  30. M. Ahmad, S. Shabbir, S. K. Roy, D. Hong, X. Wu, J. Yao, A. M. Khan, M. Mazzara, S. Distefano, and J. Chanussot, “Hyperspectral image classification—traditional to deep models: A survey for future prospects,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 968–999, 2021.
  31. F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Transactions on Geoscience and Remote Sensing, 2004.
  32. L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shyam Varahagiri (1 paper)
  2. Aryaman Sinha (2 papers)
  3. Shiv Ram Dubey (55 papers)
  4. Satish Kumar Singh (32 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.