Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast 3D CNN for Hyperspectral Image Classification (2004.14152v1)

Published 29 Apr 2020 in eess.IV and cs.CV

Abstract: Hyperspectral imaging (HSI) has been extensively utilized for a number of real-world applications. HSI classification (HSIC) is a challenging task due to high inter-class similarity, high intra-class variability, overlapping, and nested regions. A 2D Convolutional Neural Network (CNN) is a viable approach whereby HSIC highly depends on both Spectral-Spatial information, therefore, 3D CNN can be an alternative but highly computational complex due to the volume and spectral dimensions. Furthermore, these models do not extract quality feature maps and may underperform over the regions having similar textures. Therefore, this work proposed a 3D CNN model that utilizes both spatial-spectral feature maps to attain good performance. In order to achieve the said performance, the HSI cube is first divided into small overlapping 3D patches. Later these patches are processed to generate 3D feature maps using a 3D kernel function over multiple contiguous bands that persevere the spectral information as well. Benchmark HSI datasets (Pavia University, Salinas and Indian Pines) are considered to validate the performance of our proposed method. The results are further compared with several state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Muhammad Ahmad (40 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.