Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cosmic-Ray Propagation Models Elucidate the Prospects for Antinuclei Detection (2404.13114v1)

Published 19 Apr 2024 in astro-ph.HE and hep-ph

Abstract: Tentative observations of cosmic-ray antihelium by the AMS-02 collaboration have re-energized the quest to use antinuclei to search for physics beyond the standard model. However, our transition to a data-driven era requires more accurate models of the expected astrophysical antinuclei fluxes. We use a state-of-the-art cosmic-ray propagation model, fit to high-precision antiproton and cosmic-ray nuclei (B, Be, Li) data, to constrain the antinuclei flux from both astrophysical and dark matter annihilation models. We show that astrophysical sources are capable of producing $\mathcal{O}(1)$ antideuteron events and $\mathcal{O}(0.1)$ antihelium-3 events over 15~years of AMS-02 observations. Standard dark matter models could potentially produce higher levels of these antinuclei, but showing a different energy-dependence. Given the uncertainties in these models, dark matter annihilation is still the most promising candidate to explain preliminary AMS-02 results. Meanwhile, any robust detection of antihelium-4 events would require more novel dark matter model building or a new astrophisical production mechanism.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. Silk and M. Srednicki, Phys. Rev. Lett. 53, 624 (1984).
  2. S. Rudaz and F. W. Stecker, apj 325, 16 (1988).
  3. G. Jungman and M. Kamionkowski, Phys. Rev. D 49, 2316 (1994).
  4. O. Adriani et al. (PAMELA Collaboration), Phys. Rev. Lett. 102, 051101 (2009).
  5. O. Adriani et al., Phys. Rev. Lett. 105, 121101 (2010).
  6. I. John and T. Linden, Journal of Cosmology and Astroparticle Physics 2021, 007 (2021).
  7. I. Krommydas and I. Cholis, “Revisiting gev-scale annihilating dark matter with the ams-02 positron fraction,”  (2022).
  8. M. W. Winkler, JCAP 02, 048 (2017), arXiv:1701.04866 [hep-ph] .
  9. S. Ting, Press Conference at CERN  (2016), indico.cern.ch/event/592392/attachments/1381599/2110332/AMS-CERN-Dec-2016.pdf .
  10. P. von Doetinchem et al., JCAP 08, 035 (2020), arXiv:2002.04163 [astro-ph.HE] .
  11. M. W. Winkler and T. Linden, Phys. Rev. Lett. 126, 101101 (2021a), arXiv:2006.16251 [hep-ph] .
  12. ALICE Collaboration, “Letter of intent for alice 3: A next-generation heavy-ion experiment at the lhc,”  (2022).
  13. J. Heeck and A. Rajaraman, J. Phys. G 47, 105202 (2020), arXiv:1906.01667 [hep-ph] .
  14. D. Curtin and C. Gemmell, “Indirect detection of dark matter annihilating into dark glueballs,”  (2022).
  15. S. Acharya et al. (ALICE), Nature Phys. 19, 61 (2023), arXiv:2202.01549 [nucl-ex] .
  16. and S. Acharya et al., Journal of High Energy Physics 2022 (2022), 10.1007/jhep01(2022)106.
  17. C. Bierlich et al., SciPost Phys. Codeb. 2022, 8 (2022), arXiv:2203.11601 [hep-ph] .
  18. J. Bellm et al., Eur. Phys. J. C 76, 196 (2016), arXiv:1512.01178 [hep-ph] .
  19. A. Schwarzschild and i. c. v. Zupančič, Phys. Rev. 129, 854 (1963).
  20. R. Kappl and M. W. Winkler, JCAP 09, 051 (2014), arXiv:1408.0299 [hep-ph] .
  21. M. W. Winkler and T. Linden, “Response to comment on "dark matter annihilation can produce a detectable antihelium flux through Λb¯¯subscriptΛ𝑏\bar{\Lambda_{b}}over¯ start_ARG roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_ARG decays",”  (2021b).
  22. G. A. et al. and, The European Physical Journal C 9, 1 (1999).
  23. Particle Data Group, Eur. Phys. J. C 3, 1 (1998).
  24. P. De la Torre Luque, PoS ICRC2023, 1369 (2023).
  25. K. Blum and M. Takimoto, Phys. Rev. C 99, 044913 (2019), arXiv:1901.07088 [nucl-th] .
  26. B. Alper et al., Phys. Lett. B 46, 265 (1973).
  27. M. G. Albrow et al. (CHLM), Nucl. Phys. B 97, 189 (1975).
  28. S. Henning et al. (British-Scandinavian-MIT), Lett. Nuovo Cim. 21, 189 (1978).
  29. S. Acharya et al. (ALICE Collaboration), Phys. Rev. C 97, 024615 (2018).
  30. S. Schael et al., Physics Letters B 639, 192 (2006).
  31. L. C. Tan and L. K. Ng, Journal of Physics G: Nuclear Physics 9, 1453 (1983).
  32. A. A. Moiseev and J. F. Ormes, Astroparticle Physics 6, 379 (1997).
  33. S. Acharya et al. (A Large Ion Collider Experiment Collaboration), Phys. Rev. Lett. 125, 162001 (2020).
  34. P. Salati, F. Donato,  and N. Fornengo, “Indirect dark matter detection with cosmic antimatter,”  (2010).
  35. F. Rogers et al., “Sensitivity of the gaps experiment to low-energy cosmic-ray antiprotons,”  (2022).
  36. R. Battiston, in 43rd COSPAR Scientific Assembly. Held 28 January - 4 February, Vol. 43 (2021) p. 1369.
  37. P. Zuccon, MIAPP Conference: Antinuclei in the Universe?  (2022), indico.ph.tum.de/event/6990/contributions/4988/attachments/3947/4992/Zuccon_miapp.pdf .
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com