Exploring the Accuracy of Interferometric Quantum Measurements under Conservation Laws (2404.12910v2)
Abstract: A (target) quantum system is often measured through observations performed on a second (meter) system to which the target is coupled. In the presence of global conservation laws holding on the joint meter-target system, the Wigner-Araki-Yanase theorem and its generalizations predict a lower-bound on the measurement's error (Ozawa's bound). While practically negligible for macroscopic meters, it becomes relevant for microscopic ones. Here, we propose a simple interferometric setup, arguably within reach of present technology, in which a flying particle (a microscopic quantum meter) is used to measure a qubit by interacting with it in one arm of the interferometer. In this scenario, the globally conserved quantity is the total energy of particle and qubit. We show how the measurement error, $\varepsilon$, is linked to the non-stationary nature of the measured observable and the finite duration of the target-meter interaction while Ozawa's bound, $\varepsilon_{\mathrm B}$, only depends on the momentum uncertainty of the meter's wavepacket. When considering short wavepackets with respect to the evolution time of the qubit, we show that $\varepsilon/\varepsilon_{\mathrm B}$ is strictly tied to the position-momentum uncertainty of the meter's wavepacket and $\varepsilon/\varepsilon_{\mathrm B} \rightarrow 1$ only when employing Gaussian wavepackets. On the contrary, long wavepackets of any shape lead to $\varepsilon/\varepsilon_{\mathrm B} \rightarrow \sqrt{2}$. In addition to their fundamental relevance, our findings have important practical consequences for optimal resource management in quantum technologies.
- A. N. Jordan and I. A. Siddiqi, Quantum Measurement: Theory and Practice (Cambridge University Press, 2024).
- P. Busch, Translation of "Die Messung quantenmechanischer Operatoren" by E.P. Wigner, arXiv:1012.4372 (2010).
- H. Araki and M. M. Yanase, Measurement of quantum mechanical operators, Phys. Rev. 120, 622 (1960).
- M. M. Yanase, Optimal measuring apparatus, Phys. Rev. 123, 666 (1961).
- S. Luo, Wigner-yanase skew information and uncertainty relations, Phys. Rev. Lett. 91, 180403 (2003).
- T. Miyadera and H. Imai, Wigner-araki-yanase theorem on distinguishability, Phys. Rev. A 74, 024101 (2006).
- L. Loveridge and P. Busch, ‘measurement of quantum mechanical operators’ revisited, The European Physical Journal D 62, 297 (2011).
- M. Navascués and S. Popescu, How energy conservation limits our measurements, Phys. Rev. Lett. 112, 140502 (2014).
- Y. Kuramochi and H. Tajima, Wigner-araki-yanase theorem for continuous and unbounded conserved observables, arXiv:2208.13494 (2022).
- J. R. Taylor, Scattering theory: the quantum theory of nonrelativistic collisions (Courier Corporation, 2006).
- R. Katsube, M. Ozawa, and M. Hotta, Limitations of quantum measurements and operations of scattering type under the energy conservation law, arXiv:2211.13433 (2023).
- S. Rogers and A. N. Jordan, Postselection and quantum energetics, Phys. Rev. A 106, 052214 (2022a).
- Y. Aharonov and T. Kaufherr, Quantum frames of reference, Phys. Rev. D 30, 368 (1984).
- A. S. Malabarba, A. J. Short, and P. Kammerlander, Clock-driven quantum thermal engines, New Journal of Physics 17, 045027 (2015).
- N. Gisin and E. Zambrini Cruzeiro, Quantum measurements, energy conservation and quantum clocks, Annalen der Physik 530, 1700388 (2018).
- S. Rogers and A. N. Jordan, Postselection and quantum energetics, Phys. Rev. A 106, 052214 (2022b).
- J.-T. Shen and S. Fan, Theory of single-photon transport in a single-mode waveguide. i. coupling to a cavity containing a two-level atom, Phys. Rev. A 79, 023837 (2009).
- See supplemental material at…[URL will be inserted by the publisher], (2023).
- A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81, 1051 (2009).
- S. Machluf, Y. Japha, and R. Folman, Coherent Stern–Gerlach momentum splitting on an atom chip, Nat. Comm. 4, 2424 (2013).
- A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nat. Phys. 8, 285 (2012).
- M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339, 1169 (2013).
- M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit qed: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A 79, 013819 (2009).
- M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89, 057902 (2002b).
- A. Auffèves, Quantum technologies need a quantum energy initiative, PRX Quantum 3, 020101 (2022).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.