Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching (2404.12724v2)

Published 19 Apr 2024 in cs.LG

Abstract: In this paper, we propose the Graph-Learning-Dual Graph Convolutional Neural Network called GLDGCN based on the classic Graph Convolutional Neural Network(GCN) by introducing dual convolutional layer and graph learning layer. We apply GLDGCN to the semi-supervised node classification task. Compared with the baseline methods, we achieve higher classification accuracy on three citation networks Citeseer, Cora and Pubmed, and we also analyze and discussabout selection of the hyperparameters and network depth. GLDGCN also perform well on the classic social network KarateClub and the new Wiki-CS dataset. For the insufficient ability of our algorithm to process large graphs during the experiment, we also introduce subgraph clustering and stochastic gradient descent methods into GCN and design a semi-supervised node classification algorithm based on the CLustering Graph Convolutional neural Network, which enables GCN to process large graph and improves its application value. We complete semi-supervised node classification experiments on two classic large graph which are PPI dataset (more than 50,000 nodes) and Reddit dataset (more than 200,000 nodes), and also perform well.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zibin Huang (1 paper)
  2. Jun Xian (11 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets