Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Classical-Quantum Dual Encoding for Laser Communications in Space (2404.12600v1)

Published 19 Apr 2024 in quant-ph

Abstract: In typical laser communications classical information is encoded by modulating the amplitude of the laser beam and measured via direct detection. We add a layer of security using quantum physics to this standard scheme, applicable to free-space channels. We consider a simultaneous classical-quantum communication scheme where the classical information is encoded in the usual way and the quantum information is encoded as fluctuations of a sub-Poissonian noise-floor. For secret key generation, we consider a continuous-variable quantum key distribution protocol (CVQKD) using a Gaussian ensemble of squeezed states and direct detection. Under the assumption of passive attacks secure key generation and classical communication can proceed simultaneously. Compared with standard CVQKD. which is secure against unrestricted attacks, our added layer of quantum security is simple to implement, robust and does not affect classical data rates. We perform detailed simulations of the performance of the protocol for a free-space atmospheric channel. We analyse security of the CVQKD protocol in the composable finite-size regime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. M. Toyoshima, “Recent trends in space laser communications for small satellites and constellations,” Journal of Lightwave Technology 39, 693 (2020).
  2. H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki,  and M. Toyoshima, “Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite,” Nature Photonics 11, 502 (2017).
  3. R. Kumar, A. Wonfor, R. Penty, T. Spiller,  and I. White, “Experimental demonstration of single-shot quantum and classical signal transmission on single wavelength optical pulse,” Scientific Reports 9, 11190 (2019).
  4. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus,  and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
  5. F. Xu, X. Ma, Q. Zhang, H.-K. Lo,  and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys. 92, 025002 (2020).
  6. M. Curty, M. Lewenstein,  and N. Lütkenhaus, “Entanglement as a precondition for secure quantum key distribution,” Phys. Rev. Lett. 92, 217903 (2004).
  7. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
  8. H. Yonezawa and A. Furusawa, “Continuous-variable quantum information processing with squeezed states of light,”  (2008), arXiv:0811.1092 .
  9. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro,  and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
  10. A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC Press, 2017).
  11. N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng,  and L. Hanzo, “Satellite-based continuous-variable quantum communications: State-of-the-art and a predictive outlook,” IEEE Communications Surveys & Tutorials 21, 881 (2019).
  12. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
  13. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph,  and P. K. Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
  14. D. Gottesman and J. Preskill, “Secure quantum key distribution using squeezed states,” Physical Review A 63 (2001), 10.1103/physreva.63.022309.
  15. N. J. Cerf, M. Lévy,  and G. V. Assche, “Quantum distribution of gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
  16. A. Leverrier, “Security of continuous-variable quantum key distribution via a gaussian de finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
  17. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel,  and R. F. Werner, “Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
  18. R. García-Patrón and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
  19. S. Ghorai, E. Diamanti,  and A. Leverrier, “Composable security of two-way continuous-variable quantum key distribution without active symmetrization,” Phys. Rev. A 99, 012311 (2019).
  20. C. Bonato, A. Tomaello, V. D. Deppo, G. Naletto,  and P. Villoresi, “Feasibility of satellite quantum key distribution,” New Journal of Physics 11, 045017 (2009).
  21. L. Moli-Sanchez, A. Rodriguez-Alonso,  and G. Seco-Granados, “Performance analysis of quantum cryptography protocols in optical earth-satellite and intersatellite links,” IEEE Journal on Selected Areas in Communications 27, 1582 (2009).
  22. M. Ghalaii, S. Bahrani, C. Liorni, F. Grasselli, H. Kampermann, L. Wooltorton, R. Kumar, S. Pirandola, T. P. Spiller, A. Ling, B. Huttner,  and M. Razavi, “Realistic threat models for satellite-based quantum key distribution,”  (2022).
  23. N. Hosseinidehaj, M. S. Winnel,  and T. C. Ralph, “Simple and loss-tolerant free-space quantum key distribution using a squeezed laser,” Phys. Rev. A 105, 032602 (2022).
  24. I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, 207 (2005), https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2004.1372 .
  25. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin,  and W. K. Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Phys. Rev. Lett. 76, 722.
  26. K. P. Seshadreesan, H. Krovi,  and S. Guha, “Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors,” Phys. Rev. A 100, 022315 (2019).
  27. C. S. Jacobsen, L. S. Madsen, V. C. Usenko, R. Filip,  and U. L. Andersen, “Complete elimination of information leakage in continuous-variable quantum communication channels,” npj Quantum Information 4, 32 (2018).
  28. M. S. Winnel, N. Hosseinidehaj,  and T. C. Ralph, “Minimization of information leakage in continuous-variable quantum key distribution,” Phys. Rev. A 104, 012411 (2021).
  29. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf,  and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238 (2003).
  30. H.-A. Bachor and T. C. Ralph, “A guide to experiments in quantum optics,”   (3rd Edition Wiley, New York, 2019).
  31. M. Collett, R. Loudon,  and C. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” Journal of Modern Optics 34, 881 (1987).
  32. G. Breitenbach, S. Schiller,  and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471 (1997).
  33. T.C.Ralph, E.H.Huntington,  and T.Symul, “Single photon side-bands,” Phys. Rev. A 77, 063817 (2008).
  34. T. Vergoossen, R. Bedington, J. A. Grieve,  and A. Ling, “Satellite quantum communications when man-in-the-middle attacks are excluded,” Entropy 21 (2019), 10.3390/e21040387.
  35. V. C. Usenko, B. Heim, C. Peuntinger, C. Wittmann, C. Marquardt, G. Leuchs,  and R. Filip, “Entanglement of gaussian states and the applicability to quantum key distribution over fading channels,” New Journal of Physics 14, 093048 (2012).
  36. L. Ruppert, C. Peuntinger, B. Heim, K. Günthner, V. C. Usenko, D. Elser, G. Leuchs, R. Filip,  and C. Marquardt, “Fading channel estimation for free-space continuous-variable secure quantum communication,” New Journal of Physics 21, 123036 (2019).
  37. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. 67, 390 (1977).
  38. P. Hickson, “Atmospheric and adaptive optics,” The Astronomy and Astrophysics Review 22, 76 (2014).
  39. Z. Wang, R. Malaney,  and B. Burnett, “Satellite-to-Earth quantum key distribution via orbital angular momentum,” Phys. Rev. Appl. 14, 064031 (2020).
  40. J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27, 2111 (1988).
  41. B. L. McGlamery, “Restoration of turbulence-degraded images,” J. Opt. Soc. Am. 57, 293 (1967).
  42. J. E. Krist, “PROPER: an optical propagation library for IDL,” in Optical Modeling and Performance Predictions III, Vol. 6675, edited by M. A. Kahan, International Society for Optics and Photonics (SPIE, 2007) p. 66750P.
  43. A. H. Ibrahim, F. S. Roux,  and T. Konrad, “Parameter dependence in the atmospheric decoherence of modally entangled photon pairs,” Phys. Rev. A 90, 052115 (2014).
  44. E. Villaseñor, M. He, Z. Wang, R. Malaney,  and M. Z. Win, “Enhanced uplink quantum communication with satellites via downlink channels,” IEEE Transactions on Quantum Engineering 2, 1 (2021).
  45. E. Villaseñor, R. Malaney, K. A. Mudge,  and K. J. Grant, “Atmospheric effects on satellite-to-ground quantum key distribution using coherent states,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference (2020) pp. 1–6.
  46. Z. Wang, R. Malaney,  and R. Aguinaldo, “Temporal modes of light in satellite-to-Earth quantum communications,” IEEE Communications Letters 26, 311 (2022).
  47. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann,  and R. Schnabel, “Observation of squeezed light with 10-d B quantum-noise reduction,” Phys. Rev. Lett. 100, 033602 (2008).
  48. H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Communications Surveys & Tutorials 19, 57 (2017).
  49. S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang,  and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43 (2017).
  50. J.-P. Bourgoin, E. Meyer-Scott, B. L. Higgins, B. Helou, C. Erven, H. Hübel, B. Kumar, D. Hudson, I. D’Souza, R. Girard, R. Laflamme,  and T. Jennewein, “A comprehensive design and performance analysis of low earth orbit satellite quantum communication,” New Journal of Physics 15, 023006 (2013).
  51. C. F. Bohren and B. A. Albrecht, Atmospheric Thermodynamics (Oxford University Press, New York, 1988).
  52. A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Physical Review Letters 114 (2015), 10.1103/physrevlett.114.070501.
  53. C. Lupo, C. Ottaviani, P. Papanastasiou,  and S. Pirandola, “Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks,” Phys. Rev. A 97, 052327 (2018).
  54. Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu,  and H. Guo, “Long-distance continuous-variable quantum key distribution over 202.81 km of fiber,” Phys. Rev. Lett. 125, 010502 (2020).
  55. S. Pirandola, R. Laurenza, C. Ottaviani,  and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nature Communications 8 (2017), 10.1038/ncomms15043.
  56. Y. Yamamoto, S. Machida,  and W. H. Richardson, “Photon number squeezed states in semiconductor lasers,,” Science 255, 1219 (1992).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube