Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

First results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment (2404.12517v1)

Published 18 Apr 2024 in hep-ex and astro-ph.CO

Abstract: Axions and axion-like particles are strongly motivated dark matter candidates that are the subject of many current ground based dark matter searches. We present first results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment, which is an optical bow-tie cavity probing the axion-induced birefringence of electromagnetic waves. Our experiment is the first optical axion detector that is tunable and quantum noise limited, making it sensitive to a wide range of axion masses. We have iteratively probed the axion mass range 40.9-43.3$\text{ neV/c}2$, 49.3-50.6$\text{ neV/c}2$, and 54.4-56.7$\text{ neV/c}2$, and found no dark matter signal. On average, we constrain the ALP-photon coupling at the level $g_{a\gamma\gamma} \leq 1.9\times 10{-8} \text{ GeV}{-1}$. We also present prospects for future axion dark matter detection experiments using optical cavities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120, 127 (1983).
  2. L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120, 133 (1983).
  3. P. Sikivie, Invisible Axion Search Methods, Rev. Mod. Phys. 93, 015004 (2021), arXiv:2003.02206 [hep-ph] .
  4. F. Chadha-Day, J. Ellis, and D. J. E. Marsh, Axion dark matter: What is it and why now?, Sci. Adv. 8, abj3618 (2022), arXiv:2105.01406 [hep-ph] .
  5. J. I. Read, The Local Dark Matter Density, J. Phys. G 41, 063101 (2014), arXiv:1404.1938 [astro-ph.GA] .
  6. L. Hui, Wave Dark Matter, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  7. K. Freese, M. Lisanti, and C. Savage, Colloquium: Annual modulation of dark matter, Rev. Mod. Phys. 85, 1561 (2013), arXiv:1209.3339 [astro-ph.CO] .
  8. A. Derevianko, Detecting dark-matter waves with a network of precision-measurement tools, Phys. Rev. A 97, 042506 (2018), arXiv:1605.09717 [physics.atom-ph] .
  9. N. W. Evans, C. A. J. O’Hare, and C. McCabe, Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage, Phys. Rev. D 99, 023012 (2019), arXiv:1810.11468 [astro-ph.GA] .
  10. P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51, 1415 (1983), [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
  11. W. DeRocco and A. Hook, Axion interferometry, Phys. Rev. D 98, 035021 (2018), arXiv:1802.07273 [hep-ph] .
  12. I. Obata, T. Fujita, and Y. Michimura, Optical Ring Cavity Search for Axion Dark Matter, Phys. Rev. Lett. 121, 161301 (2018), arXiv:1805.11753 [astro-ph.CO] .
  13. D. Martynov and H. Miao, Quantum-enhanced interferometry for axion searches, Phys. Rev. D 101, 095034 (2020), arXiv:1911.00429 [physics.ins-det] .
  14. P. Sikivie, Superconducting Radio Frequency Cavities as Axion Dark Matter Detectors, arXiv  (2010), arXiv:1009.0762 [hep-ph] .
  15. L. Wasserman, All of Statistics (Springer, 2004).
  16. G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
  17. S. Andriamonje et al. (CAST), An Improved limit on the axion-photon coupling from the CAST experiment, JCAP 04, 010, arXiv:hep-ex/0702006 .
  18. C. P. Salemi et al., Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm, Phys. Rev. Lett. 127, 081801 (2021), arXiv:2102.06722 [hep-ex] .
  19. C. O’Hare, AxionLimits, https://cajohare.github.io/AxionLimits/ (2020).
  20. L. McCuller, Single-Photon Signal Sideband Detection for High-Power Michelson Interferometers, arXiv e-prints  (2022), arXiv:2211.04016 [physics.ins-det] .
  21. C. Yuan, R. Brito, and V. Cardoso, Probing ultralight dark matter with future ground-based gravitational-wave detectors, Phys. Rev. D 104, 044011 (2021), arXiv:2106.00021 [gr-qc] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 0 likes.