First results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment (2404.12517v1)
Abstract: Axions and axion-like particles are strongly motivated dark matter candidates that are the subject of many current ground based dark matter searches. We present first results from the Axion Dark-Matter Birefringent Cavity (ADBC) experiment, which is an optical bow-tie cavity probing the axion-induced birefringence of electromagnetic waves. Our experiment is the first optical axion detector that is tunable and quantum noise limited, making it sensitive to a wide range of axion masses. We have iteratively probed the axion mass range 40.9-43.3$\text{ neV/c}2$, 49.3-50.6$\text{ neV/c}2$, and 54.4-56.7$\text{ neV/c}2$, and found no dark matter signal. On average, we constrain the ALP-photon coupling at the level $g_{a\gamma\gamma} \leq 1.9\times 10{-8} \text{ GeV}{-1}$. We also present prospects for future axion dark matter detection experiments using optical cavities.
- J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120, 127 (1983).
- L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120, 133 (1983).
- P. Sikivie, Invisible Axion Search Methods, Rev. Mod. Phys. 93, 015004 (2021), arXiv:2003.02206 [hep-ph] .
- F. Chadha-Day, J. Ellis, and D. J. E. Marsh, Axion dark matter: What is it and why now?, Sci. Adv. 8, abj3618 (2022), arXiv:2105.01406 [hep-ph] .
- J. I. Read, The Local Dark Matter Density, J. Phys. G 41, 063101 (2014), arXiv:1404.1938 [astro-ph.GA] .
- L. Hui, Wave Dark Matter, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
- K. Freese, M. Lisanti, and C. Savage, Colloquium: Annual modulation of dark matter, Rev. Mod. Phys. 85, 1561 (2013), arXiv:1209.3339 [astro-ph.CO] .
- A. Derevianko, Detecting dark-matter waves with a network of precision-measurement tools, Phys. Rev. A 97, 042506 (2018), arXiv:1605.09717 [physics.atom-ph] .
- N. W. Evans, C. A. J. O’Hare, and C. McCabe, Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage, Phys. Rev. D 99, 023012 (2019), arXiv:1810.11468 [astro-ph.GA] .
- P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51, 1415 (1983), [Erratum: Phys.Rev.Lett. 52, 695 (1984)].
- W. DeRocco and A. Hook, Axion interferometry, Phys. Rev. D 98, 035021 (2018), arXiv:1802.07273 [hep-ph] .
- I. Obata, T. Fujita, and Y. Michimura, Optical Ring Cavity Search for Axion Dark Matter, Phys. Rev. Lett. 121, 161301 (2018), arXiv:1805.11753 [astro-ph.CO] .
- D. Martynov and H. Miao, Quantum-enhanced interferometry for axion searches, Phys. Rev. D 101, 095034 (2020), arXiv:1911.00429 [physics.ins-det] .
- P. Sikivie, Superconducting Radio Frequency Cavities as Axion Dark Matter Detectors, arXiv (2010), arXiv:1009.0762 [hep-ph] .
- L. Wasserman, All of Statistics (Springer, 2004).
- G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57, 3873 (1998), arXiv:physics/9711021 .
- S. Andriamonje et al. (CAST), An Improved limit on the axion-photon coupling from the CAST experiment, JCAP 04, 010, arXiv:hep-ex/0702006 .
- C. P. Salemi et al., Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm, Phys. Rev. Lett. 127, 081801 (2021), arXiv:2102.06722 [hep-ex] .
- C. O’Hare, AxionLimits, https://cajohare.github.io/AxionLimits/ (2020).
- L. McCuller, Single-Photon Signal Sideband Detection for High-Power Michelson Interferometers, arXiv e-prints (2022), arXiv:2211.04016 [physics.ins-det] .
- C. Yuan, R. Brito, and V. Cardoso, Probing ultralight dark matter with future ground-based gravitational-wave detectors, Phys. Rev. D 104, 044011 (2021), arXiv:2106.00021 [gr-qc] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.