Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Symmetries and conservation of spin angular momentum, helicity, and chirality in photonic time-varying media (2404.12340v1)

Published 18 Apr 2024 in physics.optics, cond-mat.mes-hall, and physics.app-ph

Abstract: Polarization-dependent dynamical properties of light as the spin angular momentum (SAM), helicity, and chirality are conserved quantities in free-space. Despite their similarities on account of their relationship with a circular state of polarization, SAM, helicity, and chirality emerge from distinct symmetries, which endows them with different physical meanings, properties, and practical applications. In this work, we investigate the behavior of such quantities in time-varying media (TVM), i.e., how a temporal modulation impacts their symmetries and conservation laws. Our results demonstrate that the SAM is conserved for any time modulation, helicity is only preserved in impedance-matched time modulations, while chirality is not conserved. In addition, the continuity equations highlight the dependence of the chirality with the energy content of the fields. These results provide additional insights into the similarities and differences between SAM, helicity, and chirality, as well as their physical meaning. Furthermore, our theoretical framework provides with a new perspective to analyze polarization-dependent light-matter interactions in TVM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. S. Yin, E. Galiffi, and A. Alù, Floquet metamaterials, ELight 2, 1 (2022a).
  2. L. Yuan and S. Fan, Temporal modulation brings metamaterials into new era, Light: Science & Applications 11, 173 (2022).
  3. N. Engheta, Four-dimensional optics using time-varying metamaterials, Science 379, 1190 (2023).
  4. A. Shlivinski and Y. Hadad, Beyond the bode-fano bound: Wideband impedance matching for short pulses using temporal switching of transmission-line parameters, Physical review letters 121, 204301 (2018).
  5. D. L. Sounas and A. Alù, Non-reciprocal photonics based on time modulation, Nature Photonics 11, 774 (2017).
  6. I. Liberal, J. E. Vázquez-Lozano, and V. Pacheco-Peña, Quantum antireflection temporal coatings: quantum state frequency shifting and inhibited thermal noise amplification, Laser & Photonics Reviews 17, 2200720 (2023).
  7. A. Akbarzadeh, N. Chamanara, and C. Caloz, Inverse prism based on temporal discontinuity and spatial dispersion, Optics letters 43, 3297 (2018).
  8. V. Pacheco-Peña and N. Engheta, Temporal aiming, Light: Science & Applications 9, 129 (2020).
  9. E. Galiffi, P. A. Huidobro, and J. Pendry, An archimedes’ screw for light, Nature Communications 13, 2523 (2022b).
  10. S. Yin, Y.-T. Wang, and A. Alù, Temporal optical activity and chiral time-interfaces, Optics Express 30, 47933 (2022b).
  11. J. Pendry, E. Galiffi, and P. Huidobro, Gain in time-dependent media—a new mechanism, JOSA B 38, 3360 (2021).
  12. J. E. Vázquez-Lozano and I. Liberal, Shaping the quantum vacuum with anisotropic temporal boundaries, Nanophotonics 12, 539 (2022).
  13. J. E. Vázquez-Lozano and I. Liberal, Incandescent temporal metamaterials, Nature Communications 14, 4606 (2023).
  14. Y. Kosmann-Schwarzbach, B. E. Schwarzbach, and Y. Kosmann-Schwarzbach, The Noether Theorems (Springer, 2011).
  15. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and atoms-introduction to quantum electrodynamics (1997).
  16. J. J. Sakurai and E. D. Commins, Modern quantum mechanics, revised edition (1995).
  17. W. I. Fushchich and A. Nikitin, Symmetries of Maxwell’s equations.
  18. M. Banados and I. Reyes, A short review on noether’s theorems, gauge symmetries and boundary terms, International Journal of Modern Physics D 25, 1630021 (2016).
  19. T. Kibble, Conservation laws for free fields, Journal of Mathematical Physics 6, 1022 (1965).
  20. W. Fushchich and A. Nikitin, The complete sets of conservation laws for the electromagnetic field, J. Phys. A: Math. Gen 25, L231 (1992).
  21. D. M. Lipkin, Existence of a new conservation law in electromagnetic theory, Journal of Mathematical Physics 5, 696 (1964).
  22. R. Loudon, The propagation of electromagnetic energy through an absorbing dielectric, Journal of Physics A: General Physics 3, 233 (1970).
  23. R. Ruppin, Electromagnetic energy density in a dispersive and absorptive material, Physics letters A 299, 309 (2002).
  24. T. G. Philbin, Electromagnetic energy momentum in dispersive media, Physical Review A 83, 013823 (2011).
  25. T. G. Philbin and O. Allanson, Optical angular momentum in dispersive media, Physical Review A 86, 055802 (2012).
  26. I. Bialynicki-Birula and Z. Bialynicka-Birula, Canonical separation of angular momentum of light into its orbital and spin parts, Journal of Optics 13, 064014 (2011).
  27. M. Nieto-Vesperinas, Optical torque: electromagnetic spin and orbital-angular-momentum conservation laws and their significance, Physical Review A 92, 043843 (2015).
  28. Y. Tang and A. E. Cohen, Optical chirality and its interaction with matter, Physical review letters 104, 163901 (2010).
  29. J. E. Vázquez-Lozano and A. Martínez, Optical chirality in dispersive and lossy media, Physical Review Letters 121, 043901 (2018).
  30. G. Nienhuis, Conservation laws and symmetry transformations of the electromagnetic field with sources, Physical Review A 93, 023840 (2016).
  31. I. Fernandez-Corbaton and C. Rockstuhl, Unified theory to describe and engineer conservation laws in light-matter interactions, Physical Review A 95, 053829 (2017).
  32. S. M. Barnett and R. Loudon, The enigma of optical momentum in a medium, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 927 (2010).
  33. S. M. Barnett, Resolution of the abraham-minkowski dilemma, Physical review letters 104, 070401 (2010).
  34. M. G. Silveirinha, Reexamination of the abraham-minkowski dilemma, Physical Review A 96, 033831 (2017).
  35. N. Mackinnon, On the differences between helicity and chirality, Journal of Optics 21, 125402 (2019).
  36. L. V. Poulikakos, J. A. Dionne, and A. García-Etxarri, Optical helicity and optical chirality in free space and in the presence of matter, Symmetry 11, 1113 (2019).
  37. Z. Hayran, J. B. Khurgin, and F. Monticone, ℏPlanck-constant-over-2-pi\hbarroman_ℏω𝜔\omegaitalic_ω versus ℏPlanck-constant-over-2-pi\hbarroman_ℏk: dispersion and energy constraints on time-varying photonic materials and time crystals, Optical Materials Express 12, 3904 (2022).
  38. D. M. Solís, R. Kastner, and N. Engheta, Time-varying materials in the presence of dispersion: plane-wave propagation in a lorentzian medium with temporal discontinuity, Photon. Res. 9, 1842 (2021).
  39. W. Mai, J. Xu, and D. H. Werner, Fundamental asymmetries between spatial and temporal boundaries in electromagnetics, Symmetry 15, 858 (2023).
  40. J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-Gonzalez, Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function, Physical Review A 79, 053821 (2009).
  41. J. G. Gaxiola-Luna and P. Halevi, Temporal photonic (time) crystal with a square profile of both permittivity ε𝜀\varepsilonitalic_ε (t) and permeability μ𝜇\muitalic_μ (t), Physical Review B 103, 144306 (2021).
  42. J. A. Kong, Theory of electromagnetic waves, New York  (1975).
  43. M. V. Berry, Optical currents, Journal of Optics A: Pure and Applied Optics 11, 094001 (2009).
  44. Z. Avetisyan, O. Evnin, and K. Mkrtchyan, Democratic lagrangians for nonlinear electrodynamics, Physical Review Letters 127, 271601 (2021).
  45. D. Haefner, S. Sukhov, and A. Dogariu, Spin hall effect of light in spherical geometry, Physical review letters 102, 123903 (2009).
  46. K. Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin hall effect of light, Science 348, 1448 (2015b).
  47. T. Van Mechelen and Z. Jacob, Universal spin-momentum locking of evanescent waves, Optica 3, 118 (2016).
  48. J. L. Trueba and A. F. Ranada, The electromagnetic helicity, European Journal of Physics 17, 141 (1996).
  49. H. Negoro, H. Sugimoto, and M. Fujii, Helicity-preserving optical metafluids, Nano Letters 23, 5101 (2023).
  50. J. Olmos-Trigo and X. Zambrana-Puyalto, Helicity conservation for mie optical cavities, Physical Review Applied 18, 044007 (2022).
  51. C. A. Balanis, Advanced engineering electromagnetics (John Wiley & Sons, 2012).
  52. K. Y. Bliokh and F. Nori, Characterizing optical chirality, Physical Review A 83, 021803 (2011).
  53. S. Yoo and Q.-H. Park, Metamaterials and chiral sensing: a review of fundamentals and applications, Nanophotonics 8, 249 (2019).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com