Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantum trajectory entanglement in various unravelings of Markovian dynamics (2404.12167v1)

Published 18 Apr 2024 in quant-ph

Abstract: The cost of classical simulations of quantum many-body dynamics is often determined by the amount of entanglement in the system. In this paper, we study entanglement in stochastic quantum trajectory approaches that solve master equations describing open quantum system dynamics. First, we introduce and compare adaptive trajectory unravelings of master equations. Specifically, building on Ref. [Phys. Rev. Lett. 128, 243601 (2022)], we study several greedy algorithms that generate trajectories with a low average entanglement entropy. Second, we consider various conventional unravelings of a one-dimensional open random Brownian circuit and locate the transition points from area- to volume-law-entangled trajectories. Third, we compare various trajectory unravelings using matrix product states with a direct integration of the master equation using matrix product operators. We provide concrete examples of dynamics, for which the simulation cost of stochastic trajectories is exponentially smaller than the one of matrix product operators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. W. K. Wootters, Philos. Trans. Royal Soc. A 356, 1717 (1998a).
  2. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
  3. J. Eisert and T. J. Osborne, Phys. Rev. Lett. 97, 150404 (2006).
  4. T. Prosen and M. Znidaric, Phys. Rev. E 75, 015202 (2007).
  5. P. Calabrese and J. Cardy, J. Stat. Mech. Theory Exp. 2007, P06008 (2007).
  6. S. Aaronson, Proc. R. Soc. A: Math. Phys. Eng. Sci. 461, 3473 (2005).
  7. S. Aaronson and L. Chen, arXiv preprint arXiv:1612.05903  (2016), 10.48550/arXiv.1612.05903.
  8. A. W. Harrow and A. Montanaro, Nature 549, 203 (2017).
  9. M.-H. Yung and X. Gao, arXiv preprint arXiv:1706.08913  (2017), 10.48550/arXiv.1706.08913.
  10. J. Preskill, Quantum 2, 79 (2018).
  11. N. Yoshioka and R. Hamazaki, Phys. Rev. B 99, 214306 (2019).
  12. C. Carisch and O. Zilberberg, Quantum 7, 954 (2023).
  13. N. Gisin and I. C. Percival, J. Phys. A Math. Gen. 25, 5677 (1992).
  14. L. Tian and H. Carmichael, Phys. Rev. A 46, R6801 (1992).
  15. F. Van Dorsselaer and G. Nienhuis, Eur. Phys. J. D 2, 175 (1998).
  16. M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).
  17. U. Schollwöck, Ann. Phys. 326, 96 (2011).
  18. R. Orús, Ann. Phys. 349, 117 (2014).
  19. A. J. Daley, Adv. Phys. 63, 77 (2014).
  20. R. Orús, Nat. Rev. Phys. 1, 538 (2019).
  21. T. Vovk and H. Pichler, Phys. Rev. Lett. 128, 243601 (2022).
  22. Z. Cheng and M. Ippoliti, PRX Quantum 4, 040326 (2023).
  23. C. Gardiner and P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices (World Scientific Publishing Company, 2015).
  24. Y. Fuji and Y. Ashida, Phys. Rev. B 102, 054302 (2020).
  25. I. Guevara and C. Viviescas, Phys. Rev. A 90, 012338 (2014).
  26. A. Holevo, Lobachevskii J. Math. 43, 1646 (2022).
  27. A. Holevo, Lobachevskii J. Math. 44, 2033 (2023).
  28. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  29. R. T. Rockafellar, Convex analysis, Vol. 11 (Princeton university press, 1997).
  30. A. Uhlmann, Open Syst. Inf. Dyn. 5, 209 (1998).
  31. A. Uhlmann, Entropy 12, 1799 (2010).
  32. L. Gurvits, in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (2003) pp. 10–19.
  33. S. Gharibian, arXiv preprint arXiv:0810.4507  (2008), 10.48550/arXiv.0810.4507.
  34. G. Lindblad, Comm. Math. Phys. 48, 119 (1976).
  35. H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
  36. S. R. Hedemann, arXiv preprint arXiv:1303.5904  (2013), 10.48550/arXiv.1303.5904.
  37. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998b).
  38. L. Bonnes and A. M. Läuchli, arXiv:1411.4831  (2014).
  39. S. Sachdev, Phys. World 12, 33 (1999).
  40. I. Reid and B. Bertini, Phys. Rev. B 104, 014301 (2021).
  41. A. Nagy and V. Savona, Phys. Rev. A 97, 052129 (2018).
  42. A. Nagy and V. Savona, Phys. Rev. Lett. 122, 250501 (2019).
  43. L. Gravina and V. Savona, arXiv preprint arXiv:2312.13676  (2023), 10.48550/arXiv.2312.13676.
  44. C. G. Broyden, IMA J. Appl. Math. 6, 76 (1970).
  45. R. Fletcher, Comput. J. 13, 317 (1970).
  46. D. Goldfarb, Math. Comput. 24, 23 (1970).
  47. D. F. Shanno, Math. Comput. 24, 647 (1970).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com