Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

D-Aug: Enhancing Data Augmentation for Dynamic LiDAR Scenes (2404.11127v1)

Published 17 Apr 2024 in cs.CV

Abstract: Creating large LiDAR datasets with pixel-level labeling poses significant challenges. While numerous data augmentation methods have been developed to reduce the reliance on manual labeling, these methods predominantly focus on static scenes and they overlook the importance of data augmentation for dynamic scenes, which is critical for autonomous driving. To address this issue, we propose D-Aug, a LiDAR data augmentation method tailored for augmenting dynamic scenes. D-Aug extracts objects and inserts them into dynamic scenes, considering the continuity of these objects across consecutive frames. For seamless insertion into dynamic scenes, we propose a reference-guided method that involves dynamic collision detection and rotation alignment. Additionally, we present a pixel-level road identification strategy to efficiently determine suitable insertion positions. We validated our method using the nuScenes dataset with various 3D detection and tracking methods. Comparative experiments demonstrate the superiority of D-Aug.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Jan 2020.
  2. J. Tu, P. Wang, and F. Liu, “Pp-rcnn: Point-pillars feature set abstraction for 3d real-time object detection,” in 2021 International Joint Conference on Neural Networks (IJCNN), Jul 2021.
  3. X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and D. Lin, “Cylindrical and asymmetrical 3d convolution networks for lidar segmentation,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021.
  4. R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017.
  5. C. Qi, L. Yi, H. Su, and L. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” Cornell University - arXiv,Cornell University - arXiv, Jun 2017.
  6. X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The apolloscape open dataset for autonomous driving and its application,” IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 2702–2719, Oct 2020.
  7. T. Sadjadpour, J. Li, R. Ambrus, and J. Bohg, “Shasta: Modeling shape and spatio-temporal affinities for 3d multi-object tracking,” Nov 2022.
  8. Y. Chen, Z. Yu, Y. Chen, S. Lan, A. Anandkumar, J. Jia, and J. M. Alvarez, “Focalformer3d: focusing on hard instance for 3d object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8394–8405, 2023.
  9. X. Bai, Z. Hu, X. Zhu, Q. Huang, Y. Chen, H. Fu, and C.-L. Tai, “Transfusion: Robust lidar-camera fusion for 3d object detection with transformers,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1090–1099, 2022.
  10. J. Liu, L. Bai, Y. Xia, T. Huang, B. Zhu, and Q.-L. Han, “Gnn-pmb: A simple but effective online 3d multi-object tracker without bells and whistles,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1176–1189, 2022.
  11. C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for 3d object detection from rgb-d data,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 918–927, 2018.
  12. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12697–12705, 2019.
  13. C. Zheng, X. Yan, H. Zhang, B. Wang, S. Cheng, S. Cui, and Z. Li, “Beyond 3d siamese tracking: A motion-centric paradigm for 3d single object tracking in point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8111–8120, 2022.
  14. Z. Pang, Z. Li, and N. Wang, “Simpletrack: Understanding and rethinking 3d multi-object tracking,” in European Conference on Computer Vision, pp. 680–696, Springer, 2022.
  15. J. Fang, X. Zuo, D. Zhou, S. Jin, S. Wang, and L. Zhang, “Lidar-aug: A general rendering-based augmentation framework for 3d object detection,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021.
  16. M. Hahner, D. Dai, A. Liniger, and L. Van Gool, “Quantifying data augmentation for lidar based 3d object detection,” arXiv preprint arXiv:2004.01643, 2020.
  17. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” International Conference on Learning Representations,International Conference on Learning Representations, Jan 2015.
  18. Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,” Sensors, p. 3337, Oct 2018.
  19. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2019.
  20. S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn: Point-voxel feature set abstraction for 3d object detection,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2020.
  21. S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection from point cloud,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2019.
  22. C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure aware single-stage 3d object detection from point cloud,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2020.
  23. M. Hahner, D. Dai, A. Liniger, and L. Gool, “Quantifying data augmentation for lidar based 3d object detection.,” Cornell University - arXiv,Cornell University - arXiv, Apr 2020.
  24. J. Yang, S. Shi, Z. Wang, H. Li, and X. Qi, “St3d: Self-training for unsupervised domain adaptation on 3d object detection,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021.
  25. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” Cornell University - arXiv,Cornell University - arXiv, Feb 2020.
  26. P. Šebek, Š. Pokornỳ, P. Vacek, and T. Svoboda, “Real3d-aug: Point cloud augmentation by placing real objects with occlusion handling for 3d detection and segmentation,” arXiv preprint arXiv:2206.07634, 2022.
  27. A. Xiao, J. Huang, D. Guan, K. Cui, S. Lu, and L. Shao, “Polarmix: A general data augmentation technique for lidar point clouds,” Jul 2022.
  28. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2020.
  29. B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced grouping and sampling for point cloud 3d object detection,” arXiv preprint arXiv:1908.09492, 2019.
  30. T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection and tracking,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2021.
  31. Y. Chen, J. Liu, X. Zhang, X. Qi, and J. Jia, “Voxelnext: Fully sparse voxelnet for 3d object detection and tracking,”
  32. X. Weng, J. Wang, D. Held, and K. Kitani, “3d multi-object tracking: A baseline and new evaluation metrics,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10359–10366, IEEE, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.