Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-Aware Data Augmentation for LIDAR 3D Object Detection (2211.10850v1)

Published 20 Nov 2022 in cs.CV

Abstract: For 3D object detection, labeling lidar point cloud is difficult, so data augmentation is an important module to make full use of precious annotated data. As a widely used data augmentation method, GT-sample effectively improves detection performance by inserting groundtruths into the lidar frame during training. However, these samples are often placed in unreasonable areas, which misleads model to learn the wrong context information between targets and backgrounds. To address this problem, in this paper, we propose a context-aware data augmentation method (CA-aug) , which ensures the reasonable placement of inserted objects by calculating the "Validspace" of the lidar point cloud. CA-aug is lightweight and compatible with other augmentation methods. Compared with the GT-sample and the similar method in Lidar-aug(SOTA), it brings higher accuracy to the existing detectors. We also present an in-depth study of augmentation methods for the range-view-based(RV-based) models and find that CA-aug can fully exploit the potential of RV-based networks. The experiment on KITTI val split shows that CA-aug can improve the mAP of the test model by 8%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.