Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs (2404.11014v1)

Published 17 Apr 2024 in cs.MA and cs.AI

Abstract: Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow. Traditional approaches often simplify road networks into standard graphs, which results in a failure to consider the dynamic nature of traffic data at neighboring intersections, thereby neglecting higher-order interconnections necessary for real-time control. To address this, we propose a novel TSCS framework to realize intelligent traffic control. This framework collaborates with multiple neighboring edge computing servers to collect traffic information across the road network. To elevate the efficiency of traffic signal control, we have crafted a multi-agent soft actor-critic (MA-SAC) reinforcement learning algorithm. Within this algorithm, individual agents are deployed at each intersection with a mandate to optimize traffic flow across the entire road network collectively. Furthermore, we introduce hypergraph learning into the critic network of MA-SAC to enable the spatio-temporal interactions from multiple intersections in the road network. This method fuses hypergraph and spatio-temporal graph structures to encode traffic data and capture the complex spatial and temporal correlations between multiple intersections. Our empirical evaluation, tested on varied datasets, demonstrates the superiority of our framework in minimizing average vehicle travel times and sustaining high-throughput performance. This work facilitates the development of more intelligent and reactive urban traffic management solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. L. F. P. de Oliveira, L. T. Manera, and P. D. G. D. Luz, “Development of a smart traffic light control system with real-time monitoring,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3384–3393, 2021.
  2. O. Younis and N. Moayeri, “Employing cyber-physical systems: Dynamic traffic light control at road intersections,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2286–2296, 2017.
  3. H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A reinforcement learning approach for intelligent traffic light control,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2496––2505.
  4. Z.-G. Chen, Z.-H. Zhan, S. Kwong, and J. Zhang, “Evolutionary computation for intelligent transportation in smart cities: A survey [review article],” IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp. 83–102, 2022.
  5. P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis, “A taxonomy and survey of edge cloud computing for intelligent transportation systems and connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6206–6221, 2022.
  6. D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft, and P. Hui, “Edge intelligence: Empowering intelligence to the edge of network,” Proceedings of the IEEE, vol. 109, no. 11, pp. 1778–1837, 2021.
  7. T. Zhang, Z. Shen, J. Jin, X. Zheng, A. Tagami, and X. Cao, “Achieving democracy in edge intelligence: A fog-based collaborative learning scheme,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2751–2761, 2021.
  8. C. Wu, I. Kim, and Z. Ma, “Deep reinforcement learning based traffic signal control: A comparative analysis,” in ANT/EDI40, 2023.
  9. T. Wang, A. Hussain, L. Zhang, and C. Zhao, “Collaborative edge computing for social internet of vehicles to alleviate traffic congestion,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 184–196, 2022.
  10. H. Ge, D. Gao, L. Sun, Y. Hou, C. Yu, Y. Wang, and G. Tan, “Multi-agent transfer reinforcement learning with multi-view encoder for adaptive traffic signal control,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12 572–12 587, 2022.
  11. F. Mao, Z. Li, Y. Lin, and L. Li, “Mastering arterial traffic signal control with multi-agent attention-based soft actor-critic model,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 3129–3144, 2023.
  12. T. Nishi, K. Otaki, K. Hayakawa, and T. Yoshimura, “Traffic signal control based on reinforcement learning with graph convolutional neural nets,” in Proceedings of the International Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 877–883.
  13. S. Rahmani, A. Baghbani, N. Bouguila, and Z. Patterson, “Graph neural networks for intelligent transportation systems: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8846–8885, 2023.
  14. Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong, “STMARL: A spatio-temporal multi-agent reinforcement learning approach for cooperative traffic light control,” IEEE Transactions on Mobile Computing, vol. 21, no. 6, pp. 2228–2242, 2022.
  15. A. Antelmi, G. Cordasco, M. Polato, V. Scarano, C. Spagnuolo, and D. Yang, “A survey on hypergraph representation learning,” ACM Computing Surveys, vol. 56, no. 1, 2023.
  16. T. Zhang, Y. Liu, Z. Shen, X. Ma, X. Chen, X. Huang, J. Yin, and J. Jin, “Learning from heterogeneity: A dynamic learning framework for hypergraphs,” arXiv preprint arXiv:2307.03411, 2023.
  17. P. Koonce, L. A. Rodegerdts, K. Lee, S. Quayle, S. Beaird, C. Braud, J. A. Bonneson, P. J. Tarnoff, and T. Urbanik, “Traffic signal timing manual,” in Federal Highway Administration, 2008.
  18. C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li, “Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3414–3421, 2020.
  19. F. Mao, Z. Li, and L. Li, “A comparison of deep reinforcement learning models for isolated traffic signal control,” IEEE Intelligent Transportation Systems Magazine, vol. 15, no. 1, pp. 160–180, 2023.
  20. X. Wang, L. Ke, Z. Qiao, and X. Chai, “Large-scale traffic signal control using a novel multiagent reinforcement learning,” IEEE Transactions on Cybernetics, vol. 51, no. 1, pp. 174–187, 2021.
  21. S. Rizzo, G. Vantini, and S. Chawla, “Time critic policy gradient methods for traffic signal control in complex and congested scenarios,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, pp. 1654–1664.
  22. T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement learning for large-scale traffic signal control,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1086–1095, 2020.
  23. H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li, “PressLight: Learning max pressure control to coordinate traffic signals in arterial network,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1290––1298.
  24. I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-agent system for network traffic signal control,” IET Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.
  25. M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling, “Modeling relational data with graph convolutional networks,” in The Semantic Web.   Springer International Publishing, 2018, pp. 593–607.
  26. H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang, Y. Zhu, K. Xu, and Z. Li, “CoLight: Learning network-level cooperation for traffic signal control,” in Proceedings of the ACM International Conference on Information and Knowledge Management, 2019, pp. 1913––1922.
  27. S. Zhang, Z. Ding, and S. Cui, “Introducing hypergraph signal processing: Theoretical foundation and practical applications,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 639–660, 2019.
  28. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2021.
  29. Y. Gao, Y. Feng, S. Ji, and R. Ji, “HGNN+: General hypergraph neural networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3181–3199, 2023.
  30. D. Arya and M. Worring, “Exploiting relational information in social networks using geometric deep learning on hypergraphs,” in Proceedings of the ACM on International Conference on Multimedia Retrieval, 2018, p. 117–125.
  31. H. Wu, Y. Yan, and M. K.-P. Ng, “Hypergraph collaborative network on vertices and hyperedges,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 3, pp. 3245–3258, 2023.
  32. P. Li and O. Milenkovic, “Inhomogeneous hypergraph clustering with applications,” in Proceedings of the Advances in Neural Information Processing Systems (NIPS), vol. 30, 2017.
  33. J. Wang, Y. Zhang, Y. Wei, Y. Hu, X. Piao, and B. Yin, “Metro passenger flow prediction via dynamic hypergraph convolution networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp. 7891–7903, 2021.
  34. S. Zhang, Z. Ding, and S. Cui, “Introducing hypergraph signal processing: Theoretical foundation and practical applications,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 639–660, 2020.
  35. T. Zhang, Y. Liu, Z. Shen, R. Xu, X. Chen, X. Huang, and X. Zheng, “An adaptive federated relevance framework for spatial temporal graph learning,” IEEE Transactions on Artificial Intelligence, 2023.
  36. P. Christodoulou, “Soft actor-critic for discrete action settings,” ArXiv, vol. abs/1910.07207, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:204734462
  37. H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, and Z. Li, “CityFlow: A multi-agent reinforcement learning environment for large scale city traffic scenario,” in Proceedings of The World Wide Web Conference (WWW), 2019, pp. 3620––3624.
  38. H. Mei, X. Lei, L. Da, B. Shi, and H. Wei, “LibSignal: an open library for traffic signal control,” Machine Learning, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.