Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative Reinforcement Learning on Traffic Signal Control (2205.11291v2)

Published 23 May 2022 in cs.AI

Abstract: Traffic signal control is a challenging real-world problem aiming to minimize overall travel time by coordinating vehicle movements at road intersections. Existing traffic signal control systems in use still rely heavily on oversimplified information and rule-based methods. Specifically, the periodicity of green/red light alternations can be considered as a prior for better planning of each agent in policy optimization. To better learn such adaptive and predictive priors, traditional RL-based methods can only return a fixed length from predefined action pool with only local agents. If there is no cooperation between these agents, some agents often make conflicts to other agents and thus decrease the whole throughput. This paper proposes a cooperative, multi-objective architecture with age-decaying weights to better estimate multiple reward terms for traffic signal control optimization, which termed COoperative Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (COMMA-DDPG). Two types of agents running to maximize rewards of different goals - one for local traffic optimization at each intersection and the other for global traffic waiting time optimization. The global agent is used to guide the local agents as a means for aiding faster learning but not used in the inference phase. We also provide an analysis of solution existence together with convergence proof for the proposed RL optimization. Evaluation is performed using real-world traffic data collected using traffic cameras from an Asian country. Our method can effectively reduce the total delayed time by 60\%. Results demonstrate its superiority when compared to SoTA methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chi-Chun Chao (1 paper)
  2. Jun-Wei Hsieh (24 papers)
  3. Bor-Shiun Wang (5 papers)

Summary

We haven't generated a summary for this paper yet.